Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 581(7807): 184-189, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32405020

RESUMEN

A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog1,2, but how it occurs in cities is often puzzling3. If the growth rates of urban particles are similar to those found in cleaner environments (1-10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below -15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid-base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms4,5.

2.
Nature ; 533(7604): 521-6, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27225125

RESUMEN

Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.


Asunto(s)
Aerosoles/química , Atmósfera/química , Cambio Climático , Iones/química , Oxígeno/química , Material Particulado/química , Contaminación del Aire/análisis , Monoterpenos Bicíclicos , Radiación Cósmica , Actividades Humanas , Monoterpenos/química , Oxidación-Reducción , Ozono/química , Tamaño de la Partícula , Teoría Cuántica , Ácidos Sulfúricos/análisis , Volatilización
3.
Nature ; 533(7604): 527-31, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27225126

RESUMEN

About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10(-4.5) micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10(-4.5) to 10(-0.5) micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.

4.
Proc Natl Acad Sci U S A ; 115(37): 9122-9127, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30154167

RESUMEN

Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes <10 nm, where coagulation losses to larger aerosol particles are greatest. Recent results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from [Formula: see text]C to [Formula: see text]C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We show that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward.

5.
Environ Sci Technol ; 54(13): 7911-7921, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32515954

RESUMEN

To better understand the role of aromatic hydrocarbons in new-particle formation, we measured the particle-phase abundance and volatility of oxidation products following the reaction of aromatic hydrocarbons with OH radicals. For this we used thermal desorption in an iodide-adduct Time-of-Flight Chemical-Ionization Mass Spectrometer equipped with a Filter Inlet for Gases and AEROsols (FIGAERO-ToF-CIMS). The particle-phase volatility measurements confirm that oxidation products of toluene and naphthalene can contribute to the initial growth of newly formed particles. Toluene-derived (C7) oxidation products have a similar volatility distribution to that of α-pinene-derived (C10) oxidation products, while naphthalene-derived (C10) oxidation products are much less volatile than those from toluene or α-pinene; they are thus stronger contributors to growth. Rapid progression through multiple generations of oxidation is more pronounced in toluene and naphthalene than in α-pinene, resulting in more oxidation but also favoring functional groups with much lower volatility per added oxygen atom, such as hydroxyl and carboxylic groups instead of hydroperoxide groups. Under conditions typical of polluted urban settings, naphthalene may well contribute to nucleation and the growth of the smallest particles, whereas the more abundant alkyl benzenes may overtake naphthalene once the particles have grown beyond the point where the Kelvin effect strongly influences the condensation driving force.


Asunto(s)
Hidrocarburos Aromáticos , Compuestos Orgánicos Volátiles , Aerosoles , Gases , Volatilización
6.
Environ Sci Technol ; 53(21): 12357-12365, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31553886

RESUMEN

We use a real-time temperature-programmed desorption chemical-ionization mass spectrometer (FIGAERO-CIMS) to measure particle-phase composition and volatility of nucleated particles, studying pure α-pinene oxidation over a wide temperature range (-50 °C to +25 °C) in the CLOUD chamber at CERN. Highly oxygenated organic molecules are much more abundant in particles formed at higher temperatures, shifting the compounds toward higher O/C and lower intrinsic (300 K) volatility. We find that pure biogenic nucleation and growth depends only weakly on temperature. This is because the positive temperature dependence of degree of oxidation (and polarity) and the negative temperature dependence of volatility counteract each other. Unlike prior work that relied on estimated volatility, we directly measure volatility via calibrated temperature-programmed desorption. Our particle-phase measurements are consistent with gas-phase results and indicate that during new-particle formation from α-pinene oxidation, gas-phase chemistry directly determines the properties of materials in the condensed phase. We now have consistency between measured gas-phase product concentrations, product volatility, measured and modeled growth rates, and the particle composition over most temperatures found in the troposphere.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Aerosoles , Monoterpenos Bicíclicos , Monoterpenos , Volatilización
7.
Proc Natl Acad Sci U S A ; 113(43): 12053-12058, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27790989

RESUMEN

The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by [Formula: see text] (27%) to [Formula: see text] Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.


Asunto(s)
Aerosoles/análisis , Atmósfera/análisis , Modelos Estadísticos , Aerosoles/química , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Atmósfera/química , Clima , Simulación por Computador , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Desarrollo Industrial/historia , Incertidumbre
8.
Environ Sci Atmos ; 4(7): 740-753, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39006766

RESUMEN

Isoprene affects new particle formation rates in environments and experiments also containing monoterpenes. For the most part, isoprene reduces particle formation rates, but the reason is debated. It is proposed that due to its fast reaction with OH, isoprene may compete with larger monoterpenes for oxidants. However, by forming a large amount of peroxy-radicals (RO2), isoprene may also interfere with the formation of the nucleating species compared to a purely monoterpene system. We explore the RO2 cross reactions between monoterpene and isoprene oxidation products using the radical Volatility Basis Set (radical-VBS), a simplified reaction mechanism, comparing with observations from the CLOUD experiment at CERN. We find that isoprene interferes with covalently bound C20 dimers formed in the pure monoterpene system and consequently reduces the yields of the lowest volatility (Ultra Low Volatility Organic Carbon, ULVOC) VBS products. This in turn reduces nucleation rates, while having less of an effect on subsequent growth rates.

9.
Science ; 371(6529): 589-595, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33542130

RESUMEN

Iodic acid (HIO3) is known to form aerosol particles in coastal marine regions, but predicted nucleation and growth rates are lacking. Using the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we find that the nucleation rates of HIO3 particles are rapid, even exceeding sulfuric acid-ammonia rates under similar conditions. We also find that ion-induced nucleation involves IO3 - and the sequential addition of HIO3 and that it proceeds at the kinetic limit below +10°C. In contrast, neutral nucleation involves the repeated sequential addition of iodous acid (HIO2) followed by HIO3, showing that HIO2 plays a key stabilizing role. Freshly formed particles are composed almost entirely of HIO3, which drives rapid particle growth at the kinetic limit. Our measurements indicate that iodine oxoacid particle formation can compete with sulfuric acid in pristine regions of the atmosphere.

10.
Sci Adv ; 4(12): eaau5363, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30547087

RESUMEN

A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NO x ) and sulfur oxides (SO x ) from fossil fuel combustion, as well as ammonia (NH3) from livestock and fertilizers. Here, we show how NO x suppresses particle formation, while HOMs, sulfuric acid, and NH3 have a synergistic enhancing effect on particle formation. We postulate a novel mechanism, involving HOMs, sulfuric acid, and ammonia, which is able to closely reproduce observations of particle formation and growth in daytime boreal forest and similar environments. The findings elucidate the complex interactions between biogenic and anthropogenic vapors in the atmospheric aerosol system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA