Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Curr Opin Genet Dev ; 1(3): 370-7, 1991 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-1668647

RESUMEN

Molecular genetics has proved quite successful in identifying the components of RAS-mediated signal transduction in the yeast Saccharomyces cerevisiae and in defining the nature of their interactions. Recently, the emphasis has shifted to a biochemical approach as the processes of guanine nucleotide exchange, GTPase stimulation activity and posttranslational modification of Ras proteins have all been reproduced in vitro.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Fúngicas/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Activadoras de GTPasa , Regulación Fúngica de la Expresión Génica , Proteínas Represoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiología , Transducción de Señal , Proteínas ras , ras-GRF1 , Secuencia de Aminoácidos , AMP Cíclico/metabolismo , Proteínas Fúngicas/genética , Proteínas de Unión al GTP/genética , Genes Fúngicos , Genes ras , Guanosina Trifosfato/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética
2.
Curr Opin Genet Dev ; 11(2): 199-204, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11250144

RESUMEN

Chromatin boundary elements or insulators in metazoans delimit distinct chromosomal domains of gene expression. Recently, DNA sequences with properties similar to boundary elements were also discovered in Saccharomyces cerevisiae. These sequences block the spread of transcriptionally silent chromatin, the yeast equivalent of metazoan heterochromatin, and are referred to as 'heterochromatin barriers'. These barriers share no sequence homology but all consist of multiple binding sites for various regulatory proteins. Current data suggest that barriers may function in yeast by recruiting a protein complex that precludes nucleosome assembly and thereby disrupts a contiguous array of nucleosomes required for the spread of silent chromatin.


Asunto(s)
Cromatina/fisiología , Silenciador del Gen , Heterocromatina/fisiología , Saccharomyces cerevisiae/genética , Animales , Genes Fúngicos , Heterocromatina/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
3.
Trends Genet ; 7(1): 28-33, 1991 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-1848378

RESUMEN

Ras proteins in budding yeasts initially appeared to regulate initiation of the cell cycle in response to nutrient availability. More recent work, while clarifying the mechanism of Ras-mediated signal transduction, has undermined our notion of the signal Ras transmits. We now suspect that Ras helps to coordinate cellular metabolism and mass accumulation, but what Ras responds to is not clear.


Asunto(s)
Genes Virales/fisiología , Genes ras/fisiología , Saccharomyces cerevisiae/genética , Transducción de Señal/fisiología , Ciclo Celular/fisiología , AMP Cíclico/genética
4.
Mol Cell Biol ; 9(11): 4621-30, 1989 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-2689860

RESUMEN

Mating-type genes resident in the silent cassette HML at the left arm of chromosome III are repressed by the action of four SIR gene products, most likely mediated through two cis-acting sites located on opposite sides of the locus. We showed that deletion of either of these two cis-acting sites from the chromosome did not yield any detectable derepression of HML, while deletion of both sites yielded full expression of the locus. In addition, each of these sites was capable of exerting repression of heterologous genes inserted in their vicinity. Thus, HML expression is regulated by two independent silencers, each fully competent for maintaining repression. This situation was distinct from the organization of the other silent locus, HMR, at which a single silencer served as the predominant repressor of expression. Examination of identifiable domains and binding sites within the HML silencers suggested that silencing activity can be achieved by a variety of combinations of various functional domains.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Genes del Tipo Sexual de los Hongos , Genes Reguladores , Saccharomyces cerevisiae/genética , Cromosomas Fúngicos , ARN de Hongos/análisis , ARN Mensajero/análisis , Mapeo Restrictivo , Transcripción Genética
5.
Mol Cell Biol ; 15(7): 3496-506, 1995 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-7791756

RESUMEN

The mating-type loci located at the ends of chromosome III in Saccharomyces cerevisiae are transcriptionally repressed by a region-specific but sequence-nonspecific silencing apparatus, mediated by cis-acting silencer sequences. Previous deletion analyses have defined the locations and organizations of the silencers in their normal context and have shown that they are composed of various combinations of replication origins and binding sites for specific DNA-binding proteins. We have evaluated what organization of silencer sequences is sufficient for establishing silencing at a novel location, by inserting individual silencers next to the MAT locus and then assessing expression of MAT. The results of this analysis indicate that efficient silencing can be achieved by inserting either a single copy of the E silencer from HMR or multiple, tandem copies of either the E or I silencer from HML. These results indicate that while all silencers are functionally equivalent, they have different efficiencies; HMR E is more active than HML E, which itself is more active than HML I. Both HMR E and HML E exhibit orientation-dependent silencing, and the particular organization of binding elements within the silencer domain is critical for function. In some situations, silencing of MAT is conditional: complete silencing is obtained when cells are grown on glucose, and complete derepression occurs when cells are shifted to a nonfermentable carbon source, a process mediated in part by the RAS/cyclic AMP signaling pathway. Finally, the E silencer from HMR is able to reestablish repression immediately upon a shift back to glucose, while the silencers from HML exhibit a long lag in reestablishing repression, thus indicating distinctions between the two silencers in their reestablishment capacities. These results demonstrate that silencers can serve as nonspecific gene inactivation centers and that the attendant silencing can be rendered responsive to potential developmental cues.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Péptidos/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Secuencia de Bases , AMP Cíclico/metabolismo , Genes Fúngicos/genética , Genes del Tipo Sexual de los Hongos , Glucosa/farmacología , Factor de Apareamiento , Datos de Secuencia Molecular , Saccharomyces cerevisiae/efectos de los fármacos , Transcripción Genética , Proteínas ras/metabolismo
6.
Mol Cell Biol ; 7(7): 2344-51, 1987 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-3302674

RESUMEN

Two proteins in the yeast Saccharomyces cerevisiae that are encoded by the genes RAS1 and RAS2 are structurally and functionally homologous to proteins of the mammalian ras oncogene family. We examined the role of fatty acylation in the maturation of yeast RAS2 protein by creating mutants in the putative palmitate addition site located at the carboxyl terminus of the protein. Two mutations, Cys-318 to an opal termination codon and Cys-319 to Ser-319, were created in vitro and substituted in the chromosome in place of the normal RAS2 allele. These changes resulted in a failure of RAS2 protein to be acylated with palmitate and a failure of RAS2 protein to be localized to a membrane fraction. The mutations yielded a Ras2- phenotype with respect to the ability of the resultant mutants to grow on nonfermentable carbon sources and to complement ras1- mutants. However, overexpression of the ras2Ser-319 product yielded a Ras+ phenotype without a corresponding association of the mutant protein with the membrane fraction. We conclude that the presence of a fatty acyl moiety is important for localizing RAS2 protein to the membrane where it is active but that the fatty acyl group is not an absolute requirement of RAS2 protein function.


Asunto(s)
Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Acilación , Proteínas Fúngicas/genética , Regulación de la Expresión Génica , Genes Fúngicos , Mutación , Oncogenes , Ácido Palmítico , Ácidos Palmíticos/metabolismo , Saccharomyces cerevisiae/genética
7.
Mol Cell Biol ; 17(2): 751-9, 1997 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9001229

RESUMEN

The homeodomain protein alpha2p plays a role both in transcriptional repression in the process of cell type determination and in donor selection during mating interconversion. We have explored the mechanism of alpha2p-directed donor selection by examining the effects on donor preference of mutants deficient in alpha2p-mediated transcriptional repression. As a transcriptional regulator, alpha2p interacts with Mcm1p, Tup1p, and Ssn6p to repress a-specific genes and with a1p, Tup1p, and Ssn6p to repress haploid-specific genes. We have found that mutant alleles of MATalpha2 that specifically diminish the interaction of alpha2p with Mcm1p or Tup1p behave as null alleles with regard to donor preference, while mutations of MATalpha2 that specifically diminish interaction of alpha2p with a1p behave as wild-type MATalpha2 in this capacity. Tup1p plays an essential role in alpha2p-mediated transcriptional repression, while Ssn6p has only a modest effect in repression. In a similar vein, we find that TUP1, but not SSN6, is required for proper donor selection. These results suggest that, in addition to regulating a-specific gene expression to establish the mating type of the cell, alpha2p-Mcm1p-Tup1p complex may indirectly regulate donor preference through transcriptional control of an a-specific gene. Alternatively, this complex may play a direct role in establishing donor preference via its DNA binding and chromatin organization capacity.


Asunto(s)
Regulación Fúngica de la Expresión Génica/fisiología , Proteínas de Homeodominio/fisiología , Proteínas Nucleares , Proteínas Represoras/fisiología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Alelos , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Proteínas de Homeodominio/genética , Lipoproteínas/metabolismo , Proteína 1 de Mantenimiento de Minicromosoma , Feromonas , Mutación Puntual , Proteínas Represoras/genética , Reproducción , Saccharomyces cerevisiae/fisiología , Esporas Fúngicas , Factores de Transcripción/genética
8.
Mol Cell Biol ; 17(12): 7077-87, 1997 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9372939

RESUMEN

Transcriptionally silent regions of the Saccharomyces cerevisiae genome, the silent mating type loci and telomeres, represent the yeast equivalent of metazoan heterochromatin. To gain insight into the nature of silenced chromatin structure, we have examined the topology of DNA spanning the HML silent mating type locus by determining the superhelical density of mini-circles excised from HML (HML circles) by site-specific recombination. We observed that HML circles excised in a wild-type (SIR+) strain were more negatively supercoiled upon deproteinization than were the same circles excised in a sir- strain, in which silencing was abolished, even when HML alleles in which neither circle was transcriptionally competent were used. cis-acting sites flanking HML, called silencers, are required in the chromosome for establishment and inheritance of silencing. HML circles excised without silencers from cells arrested at any point in the cell cycle retained SIR-dependent differences in superhelical density. However, progression through the cell cycle converted SIR+ HML circles to a form resembling that of circles from sir- cells. This decay was not observed with circles carrying a silencer. These results establish that (i) DNA in transcriptionally silenced chromatin assumes a distinct topology reflecting a distinct organization of silenced versus active chromatin; (ii) the altered chromatin structure in silenced regions likely results from changes in packaging of individual nucleosomes, rather than changes in nucleosome density; and (iii) cell cycle progression disrupts the silenced chromatin structure, a process that is counteracted by silencers.


Asunto(s)
Cromatina/química , Cromatina/genética , ADN de Hongos/química , ADN de Hongos/genética , Saccharomyces cerevisiae/genética , Ciclo Celular/genética , ADN Circular/química , ADN Circular/genética , ADN Superhelicoidal/química , ADN Superhelicoidal/genética , Regulación Fúngica de la Expresión Génica , Conformación de Ácido Nucleico , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología , Transcripción Genética
9.
Mol Cell Biol ; 5(10): 2770-80, 1985 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-3915534

RESUMEN

By S1 nuclease protection experiments and primer extension analysis, we determined precisely the cap and polyadenylation sites of transcripts from the four genes of the yeast 2 micron circle plasmid, as well as those of other plasmid transcripts of unknown function. In addition, we used deletion analysis to identify sequences necessary for polyadenylation in plasmid transcripts. Our results indicate that plasmid genes constitute independent transcription units and that plasmid mRNAs are not derived by extensive processing of precursor transcripts. In addition, we found that the D coding region of 2 micron circle is precisely encompassed by a polyadenylated transcript, suggesting that this coding region constitutes a functional plasmid gene. Our identification of the position of plasmid polyadenylation sites and of sequences necessary for polyadenylation provides support for a tripartite signal for polyadenylation as proposed by Zaret and Sherman (K.S. Zaret and F. Sherman, Cell 28:563-573, 1982). Finally, these data highlight salient features of the transcriptional regulatory circuitry that underlies the control of plasmid maintenance in the cell.


Asunto(s)
Plásmidos , Saccharomyces cerevisiae/genética , Transcripción Genética , Secuencia de Bases , Deleción Cromosómica , Mapeo Cromosómico , Replicación del ADN , ADN Circular/genética , ADN de Hongos/genética , Genes Fúngicos , Poli A/genética , Biosíntesis de Proteínas , Caperuzas de ARN/genética , Procesamiento Postranscripcional del ARN , ARN de Hongos/genética , ARN Mensajero/genética
10.
Mol Cell Biol ; 5(9): 2466-75, 1985 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-3915543

RESUMEN

Stable propagation of the yeast plasmid 2 microns requires an origin of replication, a cis-active locus designated REP3, and two plasmid-encoded proteins which are the products of the REP1 and REP2 genes. The three REP loci appear to constitute a partitioning system, ensuring equal distribution of plasmid molecules to mother and daughter cells after mitosis. We have localized the REP3 site completely within a segment of five-and-one-half direct tandem repeats of a 62-base-pair unit, bordered by HpaI and AvaI restriction sites within the large unique region of the 2 microns genome. In addition, we find that the repeated elements are functionally distinct. Only a subset of the repeats is necessary to promote full partitioning activity. The other repeats appear to promote plasmid transcription. These results are discussed in the context of a model of plasmid copy control involving titration of a plasmid-specific protein by the repeated elements within REP3.


Asunto(s)
Genes Fúngicos , Genes Reguladores , Plásmidos , Replicón , Saccharomyces cerevisiae/genética , Secuencia de Bases , Replicación del ADN , ADN Circular/biosíntesis , Escherichia coli/genética , Regiones Promotoras Genéticas , Transformación Genética
11.
Mol Cell Biol ; 6(10): 3357-67, 1986 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-3540590

RESUMEN

The FLP protein of the Saccharomyces cerevisiae plasmid 2 microns circle catalyzes site-specific recombination between two repeated segments present on the plasmid. In this paper we present results of experiments we performed to define more precisely the features of the FLP recognition target site, which we propose to designate FRT, and to determine the actual recombination crossover point in vivo. We found that essential sequences for the recombination event are limited to an 8-base-pair core sequence and two 13-base-pair repeated units immediately flanking it. This is the region identified as the FLP binding site in vitro and at which FLP protein promotes specific single-strand cleavages (B. J. Andrews, G. A. Proteau, L. G. Beatty, and P. D. Sadowski, Cell 40:795-803, 1985; J. F. Senecoff, R. C. Bruckner, and M. M. Cox, Proc. Natl. Acad. Sci. USA 82:7270-7274, 1985). Mutations within the core domain can be suppressed by the presence of the identical mutation in the chromatid with which it recombines. However, mutations outside the core are not similarly suppressed. We found that strand exchange during FLP recombination occurs most of the time within the core region, proceeding through a heteroduplex intermediate. Finally, we found that most FLP-mediated events are reciprocal exchanges and that FLP-catalyzed gene conversions occur at low frequency. The low level of gene conversion associated with FLP recombination suggests that it proceeds by a breakage-joining reaction and that the two events are concerted.


Asunto(s)
Intercambio Genético , ADN Nucleotidiltransferasas/metabolismo , Plásmidos , Recombinación Genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Escherichia coli/genética , Homocigoto , Mutación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Sulfitos/farmacología
12.
Mol Cell Biol ; 15(6): 3187-96, 1995 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-7760815

RESUMEN

By differential hybridization, we identified a number of genes in Saccharomyces cerevisiae that are activated by addition of cyclic AMP (cAMP) to cAMP-depleted cells. A majority, but not all, of these genes encode ribosomal proteins. While expression of these genes is also induced by addition of the appropriate nutrient to cells starved for a nitrogen source or for a sulfur source, the pathway for nutrient activation of ribosomal protein gene transcription is distinct from that of cAMP activation: (i) cAMP-mediated transcriptional activation was blocked by prior addition of an inhibitor of protein synthesis whereas nutrient-mediated activation was not, and (ii) cAMP-mediated induction of expression occurred through transcriptional activation whereas nutrient-mediated induction was predominantly a posttranscriptional response. Transcriptional activation of the ribosomal protein gene RPL16A by cAMP is mediated through a upstream activation sequence element consisting of a pair of RAP1 binding sites and sequences between them, suggesting that RAP1 participates in the cAMP activation process. Since RAP1 protein decays during starvation for cAMP, regulation of ribosomal protein genes under these conditions may directly relate to RAP1 protein availability. These results define additional critical targets of the cAMP-dependent protein kinase, suggest a mechanism to couple ribosome production to the metabolic activity of the cell, and emphasize that nutrient regulation is independent of the RAS/cAMP pathway.


Asunto(s)
AMP Cíclico/farmacología , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas ras/metabolismo , AMP Cíclico/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Transducción de Señal
13.
Mol Cell Biol ; 11(8): 4045-52, 1991 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-2072907

RESUMEN

Null mutations in the gene YAK1, which encodes a protein with sequence homology to known protein kinases, suppress the cell cycle arrest phenotype of mutants lacking the cyclic AMP-dependent protein kinase (A kinase). That is, loss of the YAK1 protein specifically compensates for loss of the A kinase. Here, we show that the protein encoded by YAK1 has protein kinase activity. Yak1 kinase activity is low during exponential growth but is induced at least 50-fold by arrest of cells prior to the completion of S phase. Induction is not observed by arrest at stages later in the cell cycle. Depending on the arrest regimen, induction can occur either by an increase in Yak1 protein levels or by an increase in Yak1 specific activity. Finally, an increase in Yak1 protein levels causes growth arrest of cells with attenuated A kinase activity. These results suggest that Yak1 acts in a pathway parallel to that of the A kinase to negatively regulate cell proliferation.


Asunto(s)
Genes Fúngicos , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Bases , Ciclo Celular , Inducción Enzimática , Genotipo , Péptidos y Proteínas de Señalización Intracelular , Cinética , Datos de Secuencia Molecular , Sondas de Oligonucleótidos , Fenotipo , Fosforilación , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo
14.
Mol Cell Biol ; 11(5): 2641-6, 1991 May.
Artículo en Inglés | MEDLINE | ID: mdl-2017169

RESUMEN

The product of the CDC25 gene of Saccharomyces cerevisiae, in its capacity as an activator of the RAS/cyclic AMP pathway, is required for initiation of the cell cycle. In this report, we provide an identification of Cdc25p, the product of the CDC25 gene, and evidence that it promotes exchange of guanine nucleotides bound to Ras in vitro. Extracts of strains containing high levels of Cdc25p catalyze both removal of GDP from and the concurrent binding of GTP to Ras. This same activity is also obtained with an immunopurified Cdc25p-beta-galactosidase fusion protein, suggesting that Cdc25p participates directly in the exchange reaction. This biochemical activity is consistent with previous genetic analysis of CDC25 function.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Fúngicas/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas ras , ras-GRF1 , Membrana Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Genotipo , Cinética , Peso Molecular , Unión Proteica , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae
15.
Mol Cell Biol ; 7(12): 4441-52, 1987 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-3325825

RESUMEN

The product of the Saccharomyces cerevisiae SIR4 gene, in conjunction with at least three other gene products, prevents expression of mating-type genes resident at loci at either end of chromosome III, but not of the same genes resident at the MAT locus in the middle of the chromosome. To address the mechanism of this novel position effect regulation, we have conducted a structural and genetic analysis of the SIR4 gene. We have determined the nucleotide sequence of the gene and found that it encodes a lysine-rich, serine-rich protein of 152 kilodaltons. Expression of the carboxy half of the protein complements a chromosomal nonsense mutation of sir4 but not a complete deletion of the gene. These results suggest that SIR4 protein activity resides in two portions of the molecule, but that these domains need not be covalently linked to execute their biological function. We also found that high-level expression of the carboxy domain of the protein yields dominant derepression of the silent loci. This anti-Sir activity can be reversed by increased expression of the SIR3 gene, whose product is normally also required for maintaining repression of the silent loci. These results are consistent with the hypothesis that SIR3 and SIR4 proteins physically associate to form a multicomponent complex required for repression of the silent mating-type loci.


Asunto(s)
Proteínas Fúngicas/genética , Genes Fúngicos , Genes del Tipo Sexual de los Hongos , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Codón , ADN de Hongos/genética , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Mutación , Plásmidos , Regiones Promotoras Genéticas
16.
Mol Cell Biol ; 14(6): 3634-45, 1994 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8196609

RESUMEN

The Saccharomyces cerevisiae TPD1 gene has been implicated in tRNA splicing because a tpd1-1 mutant strain accumulates unspliced precursor tRNAs at high temperatures (W. H. van Zyl, N. Wills, and J. R. Broach, Genetics 123:55-68, 1989). The wild-type TPD1 gene was cloned by complementation of the tpd1-1 mutation and shown to encode a protein with substantial homology to protein phosphatase 2C (PP2C) of higher eukaryotes. Expression of Tpd1p in Escherichia coli results in PP2C-like activity. Strains deleted for the TPD1 gene exhibit multiple phenotypes: temperature-sensitive growth, accumulation of unspliced precursor tRNAs, sporulation defects, and failure of cell separation during mitotic growth. On the basis of the presence of these observable phenotypes and the fact that Tpd1p accounts for a small percentage of the observed PP2C activity, we argue that Tpd1p is a unique member of the PP2C family.


Asunto(s)
Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Genes Fúngicos , Fosfoproteínas Fosfatasas/biosíntesis , Fosfoproteínas Fosfatasas/genética , ARN de Transferencia de Serina/biosíntesis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Cationes/farmacología , Prueba de Complementación Genética , Genotipo , Cinética , Datos de Secuencia Molecular , Fosfoproteínas Fosfatasas/metabolismo , Plásmidos , Proteína Fosfatasa 2 , Empalme del ARN , ARN de Hongos/biosíntesis , Mapeo Restrictivo , Saccharomyces cerevisiae/enzimología , Homología de Secuencia de Aminoácido
17.
Mol Cell Biol ; 16(8): 4349-56, 1996 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8754835

RESUMEN

Heterochromatin in metazoans induces transcriptional silencing, as exemplified by position effect variegation in Drosophila melanogaster and X-chromosome inactivation in mammals. Heterochromatic DNA is packaged in nucleosomes that are distinct in their acetylation pattern from those present in euchromatin, although the role these differences play in the structure of heterochromatin or in the effects of heterochromatin on transcriptional activity is unclear. Here we report that, as observed in the facultative heterochromatin of the inactive X chromosome in female mammalian cells, histones H3 and H4 in chromatin spanning the transcriptionally silenced mating-type cassettes of the yeast Saccharomyces cerevisiae are hypoacetylated relative to histones H3 and H4 of transcriptionally active regions of the genome. By immunoprecipitation of chromatin fragments with antibodies specific for H4 acetylated at particular lysine residues, we found that only three of the four lysine residues in the amino-terminal domain of histone H4 spanning the silent cassettes are hypoacetylated. Lysine 12 shows significant acetylation levels. This is identical to the pattern of histone H4 acetylation observed in centric heterochromatin of D. melanogaster. These two observations provide additional evidence that the silent cassettes are encompassed in the yeast equivalent of metazoan heterochromatin. Further, mutational analysis of the amino-terminal domain of histone H4 in S. cerevisiae demonstrated that this observed pattern of histone H4 acetylation is required for transcriptional silencing. This result, in conjunction with prior mutational analyses of yeast histones H3 and H4, indicates that the particular pattern of nucleosome acetylation found in heterochromatin is required for its effects on transcription and is not simply a side effect of heterochromatin formation.


Asunto(s)
Proteínas de Drosophila , Regulación Fúngica de la Expresión Génica , Heterocromatina/metabolismo , Histona Desacetilasas , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae , Transcripción Genética , Acetilación , Acetiltransferasas/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Histona Acetiltransferasas , Nucleosomas/ultraestructura , ARN Mensajero/genética , Sirtuina 2 , Sirtuinas , Transactivadores/genética
18.
Mol Cell Biol ; 7(6): 2180-7, 1987 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-3037349

RESUMEN

The Rous sarcoma virus (RSV) pp60v-src protein was expressed in Saccharomyces cerevisiae cells either from a plasmid vector carrying the v-src gene or in yeast cells containing a single-copy v-src gene chromosomally integrated. In both yeast strains, v-src gene transcription is regulated by the galactose-inducible GAL10 promoter. Growth in galactose-containing medium resulted in constitutive expression of pp60v-src in the integrated strain and transient expression of higher levels of pp60v-src in the plasmid-bearing strain. The concentration of pp60v-src in the plasmid-bearing strain at its peak of expression was approximately threefold lower than that found in RSV-transformed mammalian cells. pp60v-src synthesized in yeast cells was phosphorylated in vivo on sites within the amino and carboxyl halves of the molecule. In immune complex kinase assays, the yeast pp60v-src was autophosphorylated on tyrosine and was able to phosphorylate exogenous substrates such as casein and enolase. The specific activity of pp60v-src synthesized in yeast cells was approximately 5- to 10-fold higher than that made in mammalian cells. Induction of pp60v-src caused the death of the plasmid-bearing yeast strain and transient inhibition of growth of the single-copy strain. Concomitantly, this induction resulted in high levels of tyrosine phosphorylation of yeast cell proteins. This indicates that pp60v-src functions as a tyrosine-specific phosphotransferase in yeast cells and suggests that hyperphosphorylation of yeast proteins is inimical to cell growth.


Asunto(s)
Virus del Sarcoma Aviar/genética , Genes Virales , Genes , Proteínas Quinasas/genética , Proteínas de los Retroviridae/genética , Saccharomyces cerevisiae/genética , Transcripción Genética , Virus del Sarcoma Aviar/enzimología , Escherichia coli/genética , Cinética , Proteína Oncogénica pp60(v-src) , Fosforilación , Plásmidos , Biosíntesis de Proteínas , Saccharomyces cerevisiae/crecimiento & desarrollo
19.
Mol Cell Biol ; 21(5): 1784-94, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11238915

RESUMEN

Cac3p/Msi1p, the Saccharomyces cerevisiae homolog of retinoblastoma-associated protein 48 (RbAp48), is a component of chromatin assembly factor I (CAF-I), a complex that assembles histones H3 and H4 onto replicated DNA. CAC3 overexpression also suppresses the RAS/cyclic AMP (cAMP) signal transduction pathway by an unknown mechanism. We investigated this mechanism and found that CAC3 suppression of RAS/cAMP signal transduction was independent of either CAC1 or CAC2, subunits required for CAF-I function. CAC3 suppression was also independent of other chromatin-modifying activities, indicating that Cac3p has at least two distinct, separable functions, one in chromatin assembly and one in regulating RAS function. Unlike Cac1p, which localizes primarily to the nucleus, Cac3p localizes to both the nucleus and the cytoplasm. In addition, Cac3p associates with Npr1p, a cytoplasmic kinase that stablizes several nutrient transporters by antagonizing a ubiquitin-mediated protein degradation pathway. Deletion of NPR1, like overexpression of Cac3p, suppressed the RAS/cAMP pathway. Furthermore, NPR1 overexpression interfered with the ability of CAC3 to suppress the RAS/cAMP pathway, indicating that extra Cac3p suppresses the RAS/cAMP pathway by sequestering Npr1p. Deletion of NPR1 did not affect the quantity, phosphorylation state, or localization of Ras2p. Consistent with the idea that Npr1p exerts its effect on the RAS/cAMP pathway by antagonizing a ubiquitin-mediated process, excess ubiquitin suppressed both the heat shock sensitivity and the sporulation defects caused by constitutive activation of the RAS/cAMP pathway. Thus, CAC3/MSI1 regulates the RAS/cAMP pathway via a chromatin-independent mechanism that involves the sequestration of Npr1p and may be due to the increased ubiquitination of an Npr1p substrate.


Asunto(s)
Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Quinasas , Proteínas de Saccharomyces cerevisiae , Supresión Genética , Proteínas ras/genética , Alelos , Núcleo Celular/metabolismo , Factor 1 de Ensamblaje de la Cromatina , AMP Cíclico/metabolismo , Citoplasma/metabolismo , ADN/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Galactosa/metabolismo , Genotipo , Glucosa/metabolismo , Proteínas Fluorescentes Verdes , Calor , Proteínas Luminiscentes/metabolismo , Fenotipo , Plásmidos/metabolismo , Pruebas de Precipitina , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Factores de Tiempo , Técnicas del Sistema de Dos Híbridos , Proteínas ras/metabolismo , Proteínas ras/fisiología
20.
Mol Cell Biol ; 16(9): 4700-9, 1996 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-8756627

RESUMEN

alpha-Factor, a 13-amino-acid pheromone secreted by haploid alpha cells of Saccharomyces cerevisiae, binds to Ste2p, a seven-transmembrane, G-protein-coupled receptor present on haploid alpha cells, to activate a signal transduction pathway required for conjugation and mating. To determine the structural requirements for alpha-factor activity, we developed a genetic screen to identify from random and semirandom libraries novel peptides that function as agonists or antagonists of Ste2p. The selection scheme was based on autocrine strains constructed to secrete random peptides and respond by growth to those that were either agonists or antagonists of Ste2p. Analysis of a number of peptides obtained by this selection procedure indicates that Trp1, Trp3, Pro8, and Gly9 are important for agonist activity specifically. His2, Leu4, Leu6, Pro10, a hydrophobic residue 12, and an aromatic residue 13 are important for both agonist and antagonist activity. Our results also show that activation of Ste2p can be achieved with novel, unanticipated combinations of amino acids. Finally, the results suggest the utility of this selection scheme for identifying novel ligands for mammalian G-protein-coupled receptors heterologously expressed in S. cerevisiae.


Asunto(s)
Péptidos/farmacología , Péptidos/fisiología , Receptores de Péptidos/fisiología , Saccharomyces cerevisiae/fisiología , Transducción de Señal/efectos de los fármacos , Factores de Transcripción , Secuencia de Aminoácidos , Aminoácidos/química , Secuencia de Bases , Factor de Apareamiento , Técnicas Microbiológicas , Datos de Secuencia Molecular , Péptidos/química , Estructura Terciaria de Proteína , Receptores del Factor de Conjugación , Receptores de Péptidos/agonistas , Receptores de Péptidos/antagonistas & inhibidores , Saccharomyces cerevisiae/efectos de los fármacos , Selección Genética , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA