Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 611(7935): 245-255, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36352134

RESUMEN

Volatile elements such as hydrogen, carbon, nitrogen and oxygen are essential ingredients to build habitable worlds like Earth, but their origin and evolution on terrestrial planets remain highly debated. Here we discuss the processes that distributed these elements throughout the early Solar System and how they then became incorporated into planetary building blocks. Volatiles on Earth and the other terrestrial planets appear to have been heterogeneously sourced from different Solar System reservoirs. The sources of planetary volatiles and the timing at which they were accreted to growing planets probably play a crucial role in controlling planet habitability.


Asunto(s)
Evolución Planetaria , Exobiología , Medio Ambiente Extraterrestre , Sistema Solar , Planeta Tierra , Medio Ambiente Extraterrestre/química , Planetas , Sistema Solar/química
2.
Nature ; 575(7783): 485-488, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31748723

RESUMEN

The exchange of volatile species-water, carbon dioxide, nitrogen and halogens-between the mantle and the surface of the Earth has been a key driver of environmental changes throughout Earth's history. Degassing of the mantle requires partial melting and is therefore linked to mantle convection, whose regime and vigour in the Earth's distant past remain poorly constrained1,2. Here we present direct geochemical constraints on the flux of volatiles from the mantle. Atmospheric xenon has a monoisotopic excess of 129Xe, produced by the decay of extinct 129I. This excess was mainly acquired during Earth's formation and early evolution3, but mantle degassing has also contributed 129Xe to the atmosphere through geological time. Atmospheric xenon trapped in samples from the Archaean eon shows a slight depletion of 129Xe relative to the modern composition4,5, which tends to disappear in more recent samples5,6. To reconcile this deficit in the Archaean atmosphere by mantle degassing would require the degassing rate of Earth at the end of the Archaean to be at least one order of magnitude higher than today. We demonstrate that such an intense activity could not have occurred within a plate tectonics regime. The most likely scenario is a relatively short (about 300 million years) burst of mantle activity at the end of the Archaean (around 2.5 billion years ago). This lends credence to models advocating a magmatic origin for drastic environmental changes during the Neoarchaean era, such as the Great Oxidation Event.

3.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836612

RESUMEN

The age of iron meteorites implies that accretion of protoplanets began during the first millions of years of the solar system. Due to the heat generated by 26Al decay, many early protoplanets were fully differentiated with an igneous crust produced during the cooling of a magma ocean and the segregation at depth of a metallic core. The formation and nature of the primordial crust generated during the early stages of melting is poorly understood, due in part to the scarcity of available samples. The newly discovered meteorite Erg Chech 002 (EC 002) originates from one such primitive igneous crust and has an andesite bulk composition. It derives from the partial melting of a noncarbonaceous chondritic reservoir, with no depletion in alkalis relative to the Sun's photosphere and at a high degree of melting of around 25%. Moreover, EC 002 is, to date, the oldest known piece of an igneous crust with a 26Al-26Mg crystallization age of 4,565.0 million years (My). Partial melting took place at 1,220 °C up to several hundred kyr before, implying an accretion of the EC 002 parent body ca. 4,566 My ago. Protoplanets covered by andesitic crusts were probably frequent. However, no asteroid shares the spectral features of EC 002, indicating that almost all of these bodies have disappeared, either because they went on to form the building blocks of larger bodies or planets or were simply destroyed.

4.
Proc Natl Acad Sci U S A ; 117(25): 13997-14004, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513744

RESUMEN

Identifying the origin of noble gases in Earth's mantle can provide crucial constraints on the source and timing of volatile (C, N, H2O, noble gases, etc.) delivery to Earth. It remains unclear whether the early Earth was able to directly capture and retain volatiles throughout accretion or whether it accreted anhydrously and subsequently acquired volatiles through later additions of chondritic material. Here, we report high-precision noble gas isotopic data from volcanic gases emanating from, in and around, the Yellowstone caldera (Wyoming, United States). We show that the He and Ne isotopic and elemental signatures of the Yellowstone gas requires an input from an undegassed mantle plume. Coupled with the distinct ratio of 129Xe to primordial Xe isotopes in Yellowstone compared with mid-ocean ridge basalt (MORB) samples, this confirms that the deep plume and shallow MORB mantles have remained distinct from one another for the majority of Earth's history. Krypton and xenon isotopes in the Yellowstone mantle plume are found to be chondritic in origin, similar to the MORB source mantle. This is in contrast with the origin of neon in the mantle, which exhibits an isotopic dichotomy between solar plume and chondritic MORB mantle sources. The co-occurrence of solar and chondritic noble gases in the deep mantle is thought to reflect the heterogeneous nature of Earth's volatile accretion during the lifetime of the protosolar nebula. It notably implies that the Earth was able to retain its chondritic volatiles since its earliest stages of accretion, and not only through late additions.

5.
Sci Adv ; 9(15): eadg2566, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37058557

RESUMEN

Mantle-derived noble gases in volcanic gases are powerful tracers of terrestrial volatile evolution, as they contain mixtures of both primordial (from Earth's accretion) and secondary (e.g., radiogenic) isotope signals that characterize the composition of deep Earth. However, volcanic gases emitted through subaerial hydrothermal systems also contain contributions from shallow reservoirs (groundwater, crust, atmosphere). Deconvolving deep and shallow source signals is critical for robust interpretations of mantle-derived signals. Here, we use a novel dynamic mass spectrometry technique to measure argon, krypton, and xenon isotopes in volcanic gas with ultrahigh precision. Data from Iceland, Germany, United States (Yellowstone, Salton Sea), Costa Rica, and Chile show that subsurface isotope fractionation within hydrothermal systems is a globally pervasive and previously unrecognized process causing substantial nonradiogenic Ar-Kr-Xe isotope variations. Quantitatively accounting for this process is vital for accurately interpreting mantle-derived volatile (e.g., noble gas and nitrogen) signals, with profound implications for our understanding of terrestrial volatile evolution.

6.
Science ; 379(6634): eabo0431, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36264828

RESUMEN

The near-Earth carbonaceous asteroid (162173) Ryugu is expected to contain volatile chemical species that could provide information on the origin of Earth's volatiles. Samples of Ryugu were retrieved by the Hayabusa2 spacecraft. We measured noble gas and nitrogen isotopes in Ryugu samples and found that they are dominated by presolar and primordial components, incorporated during Solar System formation. Noble gas concentrations are higher than those in Ivuna-type carbonaceous (CI) chondrite meteorites. Several host phases of isotopically distinct nitrogen have different abundances among the samples. Our measurements support a close relationship between Ryugu and CI chondrites. Noble gases produced by galactic cosmic rays, indicating a ~5 million year exposure, and from implanted solar wind record the recent irradiation history of Ryugu after it migrated to its current orbit.

7.
Sci Adv ; 8(46): eabo7239, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36264781

RESUMEN

The Hayabusa2 spacecraft returned to Earth from the asteroid 162173 Ryugu on 6 December 2020. One day after the recovery, the gas species retained in the sample container were extracted and measured on-site and stored in gas collection bottles. The container gas consists of helium and neon with an extraterrestrial 3He/4He and 20Ne/22Ne ratios, along with some contaminant terrestrial atmospheric gases. A mixture of solar and Earth's atmospheric gas is the best explanation for the container gas composition. Fragmentation of Ryugu grains within the sample container is discussed on the basis of the estimated amount of indigenous He and the size distribution of the recovered Ryugu grains. This is the first successful return of gas species from a near-Earth asteroid.

8.
Sci Rep ; 10(1): 5796, 2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32242104

RESUMEN

The origin of terrestrial volatiles remains one of the most puzzling questions in planetary sciences. The timing and composition of chondritic and cometary deliveries to Earth has remained enigmatic due to the paucity of reliable measurements of cometary material. This work uses recently measured volatile elemental ratios and noble gas isotope data from comet 67P/Churyumov-Gerasimenko (67P/C-G), in combination with chondritic data from the literature, to reconstruct the composition of Earth's ancient atmosphere. Comets are found to have contributed ~20% of atmospheric heavy noble gases (i.e., Kr and Xe) but limited amounts of other volatile elements (water, halogens and likely organic materials) to Earth. These cometary noble gases were likely mixed with chondritic - and not solar - sources to form the atmosphere. We show that an ancient atmosphere composed of chondritic and cometary volatiles is more enriched in Xe relative to the modern atmosphere, requiring that 8-12 times the present-day inventory of Xe was lost to space. This potentially resolves the long-standing mystery of Earth's "missing xenon", with regards to both Xe elemental depletion and isotopic fractionation in the atmosphere. The inferred Kr/H2O and Xe/H2O of the initial atmosphere suggest that Earth's surface volatiles might not have been fully delivered by the late accretion of volatile-rich carbonaceous chondrites. Instead, "dry" materials akin to enstatite chondrites potentially constituted a significant source of chondritic volatiles now residing on the Earth's surface. We outline the working hypotheses, implications and limitations of this model in the last section of this contribution.

9.
Geochem Geophys Geosyst ; 20(1): 277-294, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31007626

RESUMEN

Halogens are primarily located within surface reservoirs of the Earth; as such they have proven to be effective tracers for the identification of subducted volatiles within the mantle. Subducting lithologies exhibit a wide variety of halogen compositions, yet the mantle maintains a fairly uniform signature, suggesting halogens may be homogenized during subduction to the mantle or during eruption. Here we present halogen (Cl, Br, and I), K, noble gas, and major and trace element data on olivines from three seamounts along the Hawaiian-Emperor seamount chain to determine if the deep mantle source has retained evidence of halogen heterogeneities introduced through subduction. High Ni contents indicate that the Hawaiian-Emperor mantle source contains a recycled oceanic crust component in the form of pyroxenite, which increases from the 46% in the oldest (Detroit) to 70% in the younger seamount (Koko). Detroit seamount retains mid-ocean ridge basalts (MORB)-like Br/Cl and I/Cl, while the Br/Cl and I/Cl of Suiko and Koko seamounts are higher than MORB and similar to altered oceanic crust and dehydrated serpentinite. Helium isotopes show a similar evolution, from MORB-like values at Detroit seamount toward higher values at Suiko and Koko seamounts. The correlation between pyroxenite contributions, Br/Cl, I/Cl, and 3He/4He indicates that subducted material has been incorporated into the primordial undegassed Hawaiian mantle plume source. The identification of recycled oceanic crustal signatures in both the trace elements and halogens indicates that subduction and dehydration of altered oceanic crust may exert control on the cycling of volatile elements to the deep mantle.

10.
Sci Adv ; 4(2): eaar2091, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29507886

RESUMEN

Understanding the composition of the Archean atmosphere is vital for unraveling the origin of volatiles and the environmental conditions that led to the development of life. The isotopic composition of xenon in the Archean atmosphere has evolved through time by mass-dependent fractionation from a precursor comprising cometary and solar/chondritic contributions (referred to as U-Xe). Evaluating the composition of the Archean atmosphere is challenging because limited amounts of atmospheric gas are trapped within minerals during their formation. We show that organic matter, known to be efficient at preserving large quantities of noble gases, can be used as a new archive of atmospheric noble gases. Xe isotopes in a kerogen isolated from the 3.0-billion-year-old Farrel Quartzite (Pilbara Craton, Western Australia) are mass fractionated by 9.8 ± 2.1 per mil (‰) (2σ) per atomic mass unit, in line with a progressive evolution toward modern atmospheric values. Archean atmospheric Xe signatures in kerogens open a new avenue for following the evolution of atmospheric composition through time. The degree of mass fractionation of Xe isotopes relative to the modern atmosphere can provide a time stamp for dating Archean kerogens and therefore narrowing the time window for the diversification of early life during the Archean eon.


Asunto(s)
Atmósfera , Evolución Biológica , Sedimentos Geológicos/química , Origen de la Vida , Fraccionamiento Químico , Isótopos , Gases Nobles/análisis , Espectrometría Raman , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA