Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(15): E2189-98, 2016 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-27035978

RESUMEN

Paclitaxel is a microtubule-stabilizing chemotherapeutic agent that is widely used in cancer treatment and in a number of curative and palliative regimens. Despite its beneficial effects on cancer, paclitaxel also damages healthy tissues, most prominently the peripheral sensory nervous system. The mechanisms leading to paclitaxel-induced peripheral neuropathy remain elusive, and therapies that prevent or alleviate this condition are not available. We established a zebrafish in vivo model to study the underlying mechanisms and to identify pharmacological agents that may be developed into therapeutics. Both adult and larval zebrafish displayed signs of paclitaxel neurotoxicity, including sensory axon degeneration and the loss of touch response in the distal caudal fin. Intriguingly, studies in zebrafish larvae showed that paclitaxel rapidly promotes epithelial damage and decreased mechanical stress resistance of the skin before induction of axon degeneration. Moreover, injured paclitaxel-treated zebrafish skin and scratch-wounded human keratinocytes (HEK001) display reduced healing capacity. Epithelial damage correlated with rapid accumulation of fluorescein-conjugated paclitaxel in epidermal basal keratinocytes, but not axons, and up-regulation of matrix-metalloproteinase 13 (MMP-13, collagenase 3) in the skin. Pharmacological inhibition of MMP-13, in contrast, largely rescued paclitaxel-induced epithelial damage and neurotoxicity, whereas MMP-13 overexpression in zebrafish embryos rendered the skin vulnerable to injury under mechanical stress conditions. Thus, our studies provide evidence that the epidermis plays a critical role in this condition, and we provide a previously unidentified candidate for therapeutic interventions.


Asunto(s)
Antineoplásicos/efectos adversos , Epitelio/efectos de los fármacos , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Paclitaxel/efectos adversos , Nervios Periféricos/efectos de los fármacos , Aletas de Animales/citología , Aletas de Animales/inervación , Animales , Axones/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Expresión Génica , Humanos , Queratinocitos/efectos de los fármacos , Metaloproteinasa 13 de la Matriz/genética , Piel/citología , Piel/efectos de los fármacos , Piel/inervación , Percepción del Tacto/efectos de los fármacos , Pruebas de Toxicidad , Pez Cebra
2.
J Vis Exp ; (95)2015 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-25742070

RESUMEN

The zebrafish larval tail fin is ideal for studying tissue regeneration due to the simple architecture of the larval fin-fold, which comprises of two layers of skin that enclose undifferentiated mesenchyme, and because the larval tail fin regenerates rapidly within 2-3 days. Using this system, we demonstrate a method for capturing the repair dynamics of the amputated tail fin with time-lapse video brightfield stereomicroscopy. We demonstrate that fin amputation triggers a contraction of the amputation wound and extrusion of cells around the wound margin, leading to their subsequent clearance. Fin regeneration proceeds from proximal to distal direction after a short delay. In addition, developmental growth of the larva can be observed during all stages. The presented method provides an opportunity for observing and analyzing whole tissue-scale behaviors such as fin development and growth in a simple microscope setting, which is easily adaptable to any stereomicroscope with time-lapse capabilities.


Asunto(s)
Regeneración/fisiología , Pez Cebra/fisiología , Animales , Microscopía/métodos , Cola (estructura animal)/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA