Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Physiol Endocrinol Metab ; 316(5): E940-E947, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30779630

RESUMEN

IL-6 is secreted from muscles to the circulation during high-intensity and long-duration exercise, where muscle-derived IL-6 works as an energy sensor to increase release of energy substrates from liver and adipose tissues. We investigated the mechanism involved in the exercise-mediated surge in IL-6 during exercise. Using interval-based cycling in healthy young men, swimming exercise in mice, and electrical stimulation of primary human muscle cells, we explored the role of lactate production in muscular IL-6 release during exercise. First, we observed a tight correlation between lactate production and IL-6 release during both strenuous bicycling and electrically stimulated muscle cell cultures. In mice, intramuscular injection of lactate mimicked the exercise-dependent release of IL-6, and pH buffering of lactate production during exercise attenuated IL-6 secretion. Next, we used in vivo bioimaging to demonstrate that intrinsic intramuscular proteases were activated in mice during swimming, and that blockade of protease activity blunted swimming-induced IL-6 release in mice. Last, intramuscular injection of the protease hyaluronidase resulted in dramatic increases in serum IL-6 in mice, and immunohistochemical analyses showed that intramuscular lactate and hyaluronidase injections led to release of IL-6-containing intramyocellular vesicles. We identified a pool of IL-6 located within vesicles of skeletal muscle fibers, which could be readily secreted upon protease activity. This protease-dependent release of IL-6 was initiated by lactate production, linking training intensity and lactate production to IL-6 release during strenuous exercise.


Asunto(s)
Interleucina-6/metabolismo , Ácido Láctico/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Adulto , Animales , Quimiocina CXCL1/metabolismo , Citocinas/metabolismo , Estimulación Eléctrica , Ejercicio Físico , Humanos , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Ácido Láctico/farmacología , Masculino , Metaloproteinasa 2 de la Matriz/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/efectos de los fármacos , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Condicionamiento Físico Animal , Factor de Necrosis Tumoral alfa/metabolismo , Adulto Joven
2.
Am J Physiol Regul Integr Comp Physiol ; 302(4): R446-53, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22160546

RESUMEN

Cell membrane permeabilization by electric pulses (electropermeabilization), results in free exchange of ions across the cell membrane. The role of electrotransfer-mediated Ca(2+)-influx on muscle signaling pathways involved in degeneration (ß-actin and MurF), inflammation (IL-6 and TNF-α), and regeneration (MyoD1, myogenin, and Myf5) was investigated, using pulse parameters of both electrochemotherapy (8 HV) and DNA delivery (HVLV). Three pulsing conditions were used: 8 high-voltage pulses (8 HV), resulting in large permeabilization and ion flux, and a combination of one high-voltage pulse and one low-voltage pulse (HVLV), either alone or in combination with injection of DNA. Mice and rats were anesthetized before pulsing. At the times given, animals were killed, and intact tibialis cranialis muscles were excised for analysis. Uptake of Ca(2+) was assessed using (45)Ca as a tracer. Using gene expression analyses and histology, we showed a clear association between Ca(2+) influx and muscular response. Moderate Ca(2+) influx induced by HVLV pulses results in activation of pathways involved in immediate repair and hypertrophy. This response could be attenuated by intramuscular injection of EGTA reducing Ca(2+) influx. Larger Ca(2+) influx as induced by 8-HV pulses leads to muscle damage and muscle fiber regeneration through recruitment of satellite cells. The extent of Ca(2+) influx determines the muscular response to electrotransfer and, thus, the success of a given application. In the case of electrochemotherapy, in which the objective is cell death, a large influx of Ca(2+) may be beneficial, whereas for DNA electrotransfer, muscle recovery should occur without myofiber loss to ensure preservation of plasmid DNA.


Asunto(s)
Calcio/metabolismo , Electroporación , Músculo Esquelético/metabolismo , Actinas/metabolismo , Animales , Femenino , Técnicas de Transferencia de Gen , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/metabolismo , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico/metabolismo , Ratas , Ratas Wistar , Células Satélite del Músculo Esquelético/metabolismo , Transducción de Señal , Proteínas de Motivos Tripartitos , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
3.
Biomedicines ; 10(2)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35203514

RESUMEN

Muscular dystrophies constitute a broad group of genetic disorders leading to muscle wasting. We have previously demonstrated that treating a muscular atrophy mouse model with growth factors resulted in increased muscle mass. In the present study, we treated the Duchenne mouse model mdx for 12 weeks with myogenic growth factors peri- and post-onset of muscular degeneration to explore the effects in the oxidative muscle soleus and the glycolytic muscle extensor digitorum longus (EDL). We found no overall beneficial effect in the peri-onset group at the conclusion of the study. In the post-onset group, the functional improvement by means of electrophysiological examinations ex vivo was mostly confined to the soleus. EDL benefitted from the treatment on a molecular level but did not improve functionally. Histopathology revealed signs of inflammation at the end of treatment. In conclusion, the growth factor cocktail failed to improve the mdx on a functional level.

4.
ACS Infect Dis ; 8(5): 1098-1106, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35436109

RESUMEN

Precision antisense antibacterial agents may be developed into novel antibiotics in the fight against multidrug-resistant Gram-negative bacteria. In this study, a series of diaminobutanoic acid (DAB) dendrons are presented as novel carriers for the delivery of antisense antibacterial peptide nucleic acids (PNAs). The dendron-PNA conjugates targeting the essential acpP gene exhibit specific antisense antimicrobial bactericidal activity against Escherichia coli and Klebsiella pneumoniae at one-digit micromolar concentrations, while showing low toxicity to human cells. One compound selected from a structure-activity relationship series showed high stability in mouse and human serum (t1/2 ≫ 24 h) as well as in vivo activity against a multidrug-resistant, extended spectrum beta-lactamase-producing E. coli in a murine peritonitis model. The compound was also well tolerated in mice upon i.v. administration up to a dose of 20 mg/kg, and in vivo fluorescence imaging indicated clearance via renal excretion with slight accumulation in the kidneys and liver. Thus, DAB-based dendrons constitute a promising new chemistry platform for development of effective delivery agents for antibacterial drugs with possible in vivo use.


Asunto(s)
Dendrímeros , Proteínas de Escherichia coli , Ácidos Nucleicos de Péptidos , Animales , Antibacterianos/química , Antibacterianos/farmacología , Dendrímeros/farmacología , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Bacterias Gramnegativas/metabolismo , Proteínas de Transporte de Membrana , Ratones , Ácidos Nucleicos de Péptidos/química , Ácidos Nucleicos de Péptidos/farmacología , Péptidos/química
5.
ACS Infect Dis ; 7(8): 2152-2163, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34227804

RESUMEN

The peptidomimetic H-[NLys-tBuAla]6-NH2 (CEP-136), which exhibits low inherent antimicrobial activity against Gram-negative bacteria (MIC = 16-64 µM), was shown to significantly potentiate the antibacterial activity of several clinically important antibiotics against the human pathogens Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. Thus, the antibacterial spectrum of rifampicin, clarithromycin, and azithromycin could be extended to include also these Gram-negative bacteria. Additionally, the potentiation effect was demonstrated in a panel of clinically relevant multidrug-resistant isolates including extended-spectrum ß-lactamase (ESBL)- and carbapenemase-producing as well as colistin-resistant strains. For some peptidomimetic-antibiotic combinations, the strong synergy corresponded to a more than 50-fold reduction of the minimal inhibitory concentration of the antibiotic. Mechanistic studies indicate that the potentiation arises from a permeabilization effect exerted on the outer membrane lipopolysaccharide layer of the Gram-negative bacteria without significant disruption of the inner membrane. Furthermore, the peptidomimetic enhancer exhibited only a marginal effect on the viability of mammalian HepG2 cells even at concentrations 100-fold higher than that enabling the antibiotic enhancement. Also, a low hemolytic activity combined with limited in vivo acute toxicity of CEP-136 in healthy mice allowed in vivo validation of the potentiation effect on both rifampicin and azithromycin treatment in a murine peritonitis model. Thus, CEP-136 is an interesting hit compound for further development of effective adjuvants for repurposing antibiotics for use against infections by multidrug-resistant Gram-negative bacteria.


Asunto(s)
Antibacterianos , Peptidomiméticos , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas , Ratones , Pruebas de Sensibilidad Microbiana , Peptidomiméticos/farmacología
6.
Nucleic Acid Ther ; 31(3): 208-219, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32678992

RESUMEN

Antisense-mediated exon skipping constitutes a promising new modality for treatment of Duchenne Muscular Dystrophy (DMD), which is caused by gene mutations that typically introduce a translation stop codon in the dystrophin gene, thereby abolishing production of functional dystrophin protein. The exon removal can restore translation to produce a shortened, but still partially functional dystrophin protein. Peptide nucleic acid (PNA) as a potential antisense drug has previously been shown to restore the expression of functional dystrophin by splice modulation in the mdx mouse model of DMD. In this study, we compare systemic administration of a 20-mer splice switching antisense PNA oligomer through intravenous (i.v.) and subcutaneous (s.c.) routes in the mdx mice. Furthermore, the effect of in situ forming depot technology (BEPO®) and PNA-oligonucleotide formulation was studied. In vivo fluorescence imaging analysis showed fast renal/bladder excretion of the PNA (t½ ∼ 20 min) for i.v. administration, while s.c. administration showed a two to three times slower excretion. The release from the BEPO depot exhibited biphasic kinetics with a slow release (t½ ∼ 10 days) of 50% of the dose. In all cases, some accumulation in kidneys and liver could be detected. Formulation of PNA as a duplex hybridization complex with a complementary phosphorothioate oligonucleotide increased the solubility of the PNA. However, none of these alternative administration methods resulted in significantly improved antisense activity. Therefore, either more sophisticated formulations such as designed nanoparticles or conjugation to delivery ligands must be utilized to improve both pharmacokinetics as well as tissue targeting and availability. On the other hand, the results show that s.c. and BEPO depot administration of PNA are feasible and allow easier, higher, and less frequent dosing, as well as more controlled release, which can be exploited both for animal model studies as well as eventually in the clinic in terms of dosing optimization.


Asunto(s)
Distrofia Muscular de Duchenne , Ácidos Nucleicos de Péptidos , Animales , Distrofina/genética , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Oligonucleótidos Antisentido/genética , Ácidos Nucleicos de Péptidos/genética , Oligonucleótidos Fosforotioatos
7.
Methods Mol Biol ; 2105: 241-250, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32088875

RESUMEN

Duchenne muscular dystrophy (DMD) is the most common and severe form of muscular dystrophy and is caused by gene mutations that abolish production of functional dystrophin muscle protein. A promising new treatment exploits specifically targeted RNA-acting drugs that are able to partially restore the dystrophin protein. The mdx mouse model (animal model of DMD) serves as a good in vivo model for testing these antisense drugs. The simplest in vivo test, which circumvents the systemic circulation, is intramuscular administration of the compound. After 7 days it is possible to detect exon skipping by reverse transcriptase PCR, and newly synthesized dystrophin-positive fibers by immunohistochemistry and western blotting. All muscles, including the heart, are affected by the disease and must be treated. Therefore the use of antisense therapy for treatment of DMD requires systemic administration, and the model is also useful for systemic administration.


Asunto(s)
Empalme Alternativo , Ácidos Nucleicos de Péptidos/administración & dosificación , Ácidos Nucleicos de Péptidos/genética , Animales , Modelos Animales de Enfermedad , Distrofina/genética , Exones , Terapia Genética , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética
8.
Methods Mol Biol ; 2105: 251-260, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32088876

RESUMEN

Using near-infrared fluorophore Alexa Fluor 680 labeled peptide nucleic acids (PNAs) the biodistribution of such antisense agents can be analyzed in real time in live mice using in vivo imaging. Using the fluorescence intensity emitted from the mouse at different time points following administration, the systemic distribution and organ accumulation of PNA can be tracked. In addition, an estimation of the body half-life of the compound can be obtained by the change in fluorescence intensity over time. With this technique, the distribution of compounds can be monitored real time, while reducing the number of animals and amount of compounds required.


Asunto(s)
Colorantes Fluorescentes , Imagen Óptica , Ácidos Nucleicos de Péptidos , Espectroscopía Infrarroja Corta , Imagen de Cuerpo Entero , Animales , Línea Celular Tumoral , Análisis de Datos , Imagenología Tridimensional , Microscopía Fluorescente , Ácidos Nucleicos de Péptidos/síntesis química , Ácidos Nucleicos de Péptidos/química
9.
EMBO Mol Med ; 9(5): 545-557, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28289078

RESUMEN

The use of splice-switching antisense therapy is highly promising, with a wealth of pre-clinical data and numerous clinical trials ongoing. Nevertheless, its potential to treat a variety of disorders has yet to be realized. The main obstacle impeding the clinical translation of this approach is the relatively poor delivery of antisense oligonucleotides to target tissues after systemic delivery. We are a group of researchers closely involved in the development of these therapies and would like to communicate our discussions concerning the validity of standard methodologies currently used in their pre-clinical development, the gaps in current knowledge and the pertinent challenges facing the field. We therefore make recommendations in order to focus future research efforts and facilitate a wider application of therapeutic antisense oligonucleotides.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Terapia Genética/métodos , Oligonucleótidos Antisentido/administración & dosificación , Empalme del ARN , Animales , Vías de Administración de Medicamentos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Oligonucleótidos Antisentido/farmacocinética , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos Antisentido/toxicidad , Empalme del ARN/efectos de los fármacos
10.
Mol Ther Nucleic Acids ; 4: e267, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26623939

RESUMEN

Peptide nucleic acid (PNA) is a synthetic DNA mimic that has shown potential for discovery of novel splice switching antisense drugs. However, in vivo cellular delivery has been a limiting factor for development, and only few successful studies have been reported. As a possible modality for improvement of in vivo cellular availability, we have investigated the effect of electrotransfer upon intramuscular (i.m.) PNA administration in vivo. Antisense PNA targeting exon 23 of the murine dystrophin gene was administered by i.m. injection to the tibialis anterior (TA) muscle of normal NMRI and dystrophic mdx mice with or without electroporation. At low, single PNA doses (1.5, 3, or 10 µg/TA), electroporation augmented the antisense exon skipping induced by an unmodified PNA by twofold to fourfold in healthy mouse muscle with optimized electric parameters, measured after 7 days. The PNA splice switching was detected at the RNA level up to 4 weeks after a single-dose treatment. In dystrophic muscles of the MDX mouse, electroporation increased the number of dystrophin-positive fibers about 2.5-fold at 2 weeks after a single PNA administration compared to injection only. In conclusion, we find that electroporation can enhance PNA antisense effects in muscle tissue.

11.
Artif DNA PNA XNA ; 2(1): 6-15, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21686247

RESUMEN

Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in the dystrophin gene (DMD) that result in the absence of essential muscle protein dystrophin. Among many different approaches for DMD treatment, exon skipping, mediated by antisense oligonucleotides, is one of the most promising methods for restoration of dystrophin expression. This approach has been tested extensively targeting different exons in numerous models both in vitro and in vivo. During the past 10 years, there has been a considerable progress by using DMD animal models involving three types of antisense oligonucleotides (2'-O-methyl phosphorothioate (2OME-PS), phosphorodiamidate morpholino oligomer (PMO)) and peptide nucleic acid (PNA).

12.
PLoS One ; 4(6): e5894, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19521513

RESUMEN

Erythropoietin can be over-expressed in skeletal muscles by gene electrotransfer, resulting in 100-fold increase in serum EPO and significant increases in haemoglobin levels. Earlier studies have suggested that EPO improves several metabolic parameters when administered to chronically ill kidney patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo.At 12 weeks, EPO expression resulted in a 23% weight reduction (P<0.01) in EPO transfected obese mice; thus the mice weighed 21.9+/-0.8 g (control, normal diet,) 21.9+/-1.4 g (EPO, normal diet), 35.3+/-3.3 g (control, high-fat diet) and 28.8+/-2.6 g (EPO, high-fat diet). Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass.The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance in the high-fat fed mice. EPO expression also induced a 14% increase in muscle volume and a 25% increase in vascularisation of the EPO transfected muscle. Muscle force and stamina were not affected by EPO expression. PCR array analysis revealed that genes involved in lipid metabolism, thermogenesis and inflammation were increased in muscles in response to EPO expression, while genes involved in glucose metabolism were down-regulated. In addition, muscular fat oxidation was increased 1.8-fold in both the EPO transfected and contralateral muscles.In conclusion, we have shown that EPO when expressed in supra-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles.


Asunto(s)
Tejido Adiposo/metabolismo , Eritropoyetina/biosíntesis , Regulación de la Expresión Génica , Músculos/metabolismo , Obesidad/metabolismo , Obesidad/prevención & control , Oxígeno/metabolismo , Animales , Eritropoyetina/metabolismo , Femenino , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Inflamación , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos
13.
Am J Physiol Endocrinol Metab ; 292(4): E1231-7, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17179390

RESUMEN

A key regulatory point in the control of fatty acid (FA) oxidation is thought to be transport of FAs across the mitochondrial membrane by carnitine palmitoyltransferase I (CPT I). To investigate the role of CPT I in FA metabolism, we used in vivo electrotransfer (IVE) to locally overexpress CPT I in muscle of rodents. A vector expressing the human muscle isoform of CPT I was electrotransferred into the right lateral muscles of the distal hindlimb [tibialis cranialis (TC) and extensor digitorum longus (EDL)] of rats, and a control vector expressing GFP was electrotransferred into the left muscles. Initial studies showed that CPT I protein expression peaked 7 days after IVE (+104%, P<0.01). This was associated with an increase in maximal CPT I activity (+30%, P < 0.001) and a similar increase in palmitoyl-CoA oxidation (+24%; P<0.001) in isolated mitochondria from the TC. Importantly, oxidation of the medium-chain FA octanoyl-CoA and CPT I sensitivity to inhibition by malonyl-CoA were not altered by CPT I overexpression. FA oxidation in isolated EDL muscle strips was increased with CPT I overexpression (+28%, P<0.01), whereas FA incorporation into the muscle triacylglycerol (TAG) pool was reduced (-17%, P<0.01). As a result, intramyocellular TAG content was decreased with CPT I overexpression in both the TC (-25%, P<0.05) and the EDL (-45%, P<0.05). These studies demonstrate that acute overexpression of CPT I in muscle leads to a repartitioning of FAs away from esterification and toward oxidation and highlight the importance of CPT I in regulating muscle FA metabolism.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Músculo Esquelético/metabolismo , Triglicéridos/metabolismo , Animales , Biomarcadores/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Electroporación , Esterificación , Miembro Posterior , Humanos , Técnicas In Vitro , Metabolismo de los Lípidos , Masculino , Mitocondrias Musculares/enzimología , Músculo Esquelético/enzimología , Oxidación-Reducción , Palmitatos/metabolismo , Palmitoil Coenzima A/metabolismo , Ratas , Ratas Wistar , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA