RESUMEN
BACKGROUND: Adverse respiratory effects of particulate air pollution have been identified by epidemiological studies. We aimed to examine the health effects of ambient particulate air pollution from wood burning on school-age students in Christchurch, New Zealand, and to explore the utility of urine and exhaled breath condensate biomarkers of exposure in this population. METHODS: A panel study of 93 male students (26 with asthma) living in the boarding house of a metropolitan school was undertaken in the winter of 2004. Indoor and outdoor pollution data was continuously monitored. Longitudinal assessment of lung function (FEV1 and peak flow) and symptoms were undertaken, with event studies of high pollution on biomarkers of exposure (urinary 1-hydroxypyrene) and effect (exhaled breath condensate (EBC) pH and hydrogen peroxide concentration). RESULTS: Peak levels of air pollution were associated with small but statistically significant effects on lung function in the asthmatic students, but not healthy students. No significant effect of pollution could be seen either on airway inflammation and oxidative stress either in healthy students or students with asthma. Minor increases in respiratory symptoms were associated with high pollution exposure. Urinary 1-hydroxypyrene levels were raised in association with pollution events by comparison with low pollution control days. CONCLUSION: There is no significant effect of ambient wood-smoke particulate air pollution on lung function of healthy school-aged students, but a small effect on respiratory symptoms. Asthmatic students show small effects of peak pollution levels on lung function. Urinary 1-hydroxypyrene shows potential as a biomarker of exposure to wood smoke in this population; however measurement of EBC pH and hydrogen peroxide appears not to be useful for assessment of population health effects of air pollution.Some of the data presented in this paper has previously been published in Kingham and co-workers Atmospheric Environment, 2006 Jan; 40: 338-347 (details of pollution exposure), and Cavanagh and co-workers Sci Total Environ. 2007 Mar 1;374(1):51-9 (urine hydroxypyrene data).
Asunto(s)
Contaminación del Aire/efectos adversos , Asma/epidemiología , Tos/epidemiología , Material Particulado/toxicidad , Madera , Adolescente , Contaminación del Aire/análisis , Asma/metabolismo , Asma/fisiopatología , Biomarcadores/orina , Pruebas Respiratorias , Niño , Tos/metabolismo , Tos/fisiopatología , Volumen Espiratorio Forzado/efectos de los fármacos , Calefacción , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Nueva Zelanda/epidemiología , Ápice del Flujo Espiratorio/efectos de los fármacos , Pirenos/metabolismo , EstudiantesRESUMEN
The successfully functioning brain is a heavy user of metabolic energy. Alzheimer's disease, in which cognitive faculties decline, may be due, at least in part, to metabolic insufficiency. Using microarray analysis and quantitative RT-PCR, the expression of mRNA transcripts involved in glucose metabolism was investigated in Alzheimer's diseased post-mortem human hippocampal samples. Of the 51 members of the glycolytic, tricarboxylic acid cycle, oxidative phosphorylation, and associated pathways investigated by qPCR, 15 were confirmed to be statistically significantly (p<0.05) down-regulated in Alzheimer's disease. This finding suggests that reductions in the levels of transcripts encoded by genes that participate in energy metabolism may be involved in Alzheimer's disease.
Asunto(s)
Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/genética , Encéfalo/enzimología , Enzimas/genética , Regulación Enzimológica de la Expresión Génica/genética , Redes y Vías Metabólicas/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/fisiopatología , Encéfalo/fisiopatología , Ciclo del Ácido Cítrico/genética , Regulación hacia Abajo/genética , Metabolismo Energético/genética , Femenino , Perfilación de la Expresión Génica , Glucólisis/genética , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación Oxidativa , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
We describe a new assay for the chlorination activity of myeloperoxidase and detection of chloramines. Chloramines were detected by using iodide to catalyze the oxidation of either 3,3',5,5'-tetramethylbenzidine (TMB) or dihydrorhodamine to form strongly absorbing or fluorescent products, respectively. With TMB as little as 1 muM taurine chloramine could be detected. The sensitivity of the dihydrorhodamine assay was about 10-fold greater. The chlorination activity of myeloperoxidase was measured by trapping hypochlorous acid with taurine and subsequently using iodide to promote the oxidation reactions of the accumulated taurine chloramine. A similar approach was used to detect hypochlorous acid production by stimulated human neutrophils. Iodide-dependent catalysis distinguished N-chloramines from N-bromamines. This allows for discrimination between heme peroxidases that generate either hypochlorous acid or hypobromous acid. The assay has distinct advantages over existing assays for myeloperoxidase with regard to sensitivity, specificity, and its ease and versatility of use.
Asunto(s)
Cloraminas/análisis , Peroxidasa/metabolismo , Bencidinas/química , Bromuros/análisis , Cloraminas/metabolismo , Humanos , Ácido Hipocloroso/síntesis química , Yoduros/química , Neutrófilos/metabolismo , Rodaminas/química , Sensibilidad y Especificidad , Taurina/análogos & derivados , Taurina/químicaRESUMEN
The role of dopamine in the hippocampus remains poorly defined. Numerous studies have suggested that it acts as a neuromodulator of late-phase long-term potentiation (L-LTP) in CA1, while other reports controversially indicate that D1/D5 receptor (D1/D5R) activation may directly initiate activity-independent LTP. We have further investigated this putative role of dopamine in area CA1 in rat hippocampal slices using field potential recording techniques. Application of the dopamine D1/D5 receptor agonists SKF 38393 and 6-bromo-APB at 100 microM for 20 min did not induce an activity-independent L-LTP. Varying the incubation conditions still did not permit either SKF 38393 or an alternative D1/D5R agonist, 6-chloro-PB, to induce L-LTP. To further determine if intracellular mechanisms, which may act to limit the expression of LTP, were preventing D1/D5R-induced L-LTP expression, we inhibited protein phosphatase 1 activity by reducing cyclin-dependent kinase 5 (cdk5) inhibition of inhibitor 1. Inhibition of cdk5 by roscovitine (10 microM, 40 min) did not facilitate the ability of SKF 38393 to induce L-LTP in CA1. Biochemical experiments confirmed that the concentration of agonist used significantly elevated intracellular cAMP levels, suggesting that effective D1/D5R activation was achieved. Furthermore, coactivation with NMDA receptors (NMDAR) resulted in a synergistic increase in cAMP. These findings demonstrate that D1/D5R activation in CA1 initiates intracellular second messenger accumulation, but that this is insufficient to induce an activity-independent L-LTP.
Asunto(s)
Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Receptores de Dopamina D1/fisiología , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Animales , AMP Cíclico/metabolismo , Dopaminérgicos/farmacología , Sinergismo Farmacológico , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Técnicas In Vitro , Masculino , N-Metilaspartato/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D5 , Receptores de N-Metil-D-Aspartato/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiologíaRESUMEN
BACKGROUND: Exhaled breath condensate (EBC) analysis has been proposed as a non-invasive method of assessing airway pathology. A number of substances, including hydrogen peroxide (H2O2), have been measured in EBC, without adequate published details of validation and optimisation. OBJECTIVES: To explore factors that affect accurate quantitation of H2O2 in EBC. MATERIALS AND METHODS: H2O2 was measured in EBC samples using fluorometry with 4-hydroxyphenylacetic acid. A number of factors that might alter quantitation were studied including pH and buffering conditions, reagent storage, and assay temperature. RESULTS: Standard curve slope was significantly altered by pH, leading to a potential difference in H2O2 quantification of up to 42%. These differences were resolved by increasing the buffering capacity of the reaction mix. H2O2 added to EBC remained stable for 1 h when stored on ice. The assay was unaffected by freezing assay reagents. The limit of detection for H2O2 ranged from 3.4 nM to 8.8 nM depending on the buffer used. CONCLUSIONS: The reagents required for this assay can be stored for several months allowing valuable consistency in longitudinal studies. The quantitation of H2O2 in EBC is pH-dependent but increasing assay buffering reduces this effect. Sensitive reproducible quantitation of H2O2 in EBC requires rigorous optimisation.