Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Front Microbiol ; 13: 809735, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547129

RESUMEN

The gut microbiome performs many important functions in mammalian hosts, with community composition shaping its functional role. However, the factors that drive individual microbiota variation in wild animals and to what extent these are predictable or idiosyncratic across populations remains poorly understood. Here, we use a multi-population dataset from a common rodent species (the wood mouse, Apodemus sylvaticus), to test whether a consistent "core" gut microbiota is identifiable in this species, and to what extent the predictors of microbiota variation are consistent across populations. Between 2014 and 2018 we used capture-mark-recapture and 16S rRNA profiling to intensively monitor two wild wood mouse populations and their gut microbiota, as well as characterising the microbiota from a laboratory-housed colony of the same species. Although the microbiota was broadly similar at high taxonomic levels, the two wild populations did not share a single bacterial amplicon sequence variant (ASV), despite being only 50km apart. Meanwhile, the laboratory-housed colony shared many ASVs with one of the wild populations from which it is thought to have been founded decades ago. Despite not sharing any ASVs, the two wild populations shared a phylogenetically more similar microbiota than either did with the colony, and the factors predicting compositional variation in each wild population were remarkably similar. We identified a strong and consistent pattern of seasonal microbiota restructuring that occurred at both sites, in all years, and within individual mice. While the microbiota was highly individualised, some seasonal convergence occurred in late winter/early spring. These findings reveal highly repeatable seasonal gut microbiota dynamics in multiple populations of this species, despite different taxa being involved. This provides a platform for future work to understand the drivers and functional implications of such predictable seasonal microbiome restructuring, including whether it might provide the host with adaptive seasonal phenotypic plasticity.

2.
PLoS One ; 10(12): e0145006, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26689683

RESUMEN

Live trapping is central to the study of small mammals. Thus, any bias needs to be understood and accounted for in subsequent analyses to ensure accurate population estimates. One rarely considered bias is the behavioural response of individuals to the trap, in particular the olfactory cues left behind by previous occupants (PO). We used a data set of 8,115 trap nights spanning 17 separate trapping sessions between August 2002 and November 2013 in Wytham Woods, Oxfordshire, UK to examine if the decision to enter a trap was affected by the PO, if this was detectable in traditional Capture-Mark-Recapture trapping data (i.e., individuals not uniquely marked), and if it was possible for this effect to bias the population estimates obtained. Data were collected on Apodemus sylvaticus, Myodes glareolus, and Microtus agrestis. Three Generalised Linear Models revealed a significant tendency for the three species to enter traps with same-species PO. With, for example, A. sylvaticus 9.1 times more likely to enter a same species PO trap compared to one that contained a M. agrestis in the grassland during the nocturnal period. Simulation highlighted that, when all other factors are equal, the species with the highest PO effect will have the highest capture rate and therefore return more accurate population estimates. Despite the large dataset, certain species-, sex-, and/ or age-combinations were under-represented, and thus no effects of any additional individual-specific characteristics could be evaluated. Uniquely marking individuals would allow for the PO effect to be disentangled from other biases such as trap-shyness and spatial heterogeneity, but may not be possible in all cases and will depend on the aims of the study and the resources available.


Asunto(s)
Modelos Biológicos , Roedores , Animales , Dinámica Poblacional , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA