RESUMEN
Many crop plants rely on insect pollination, particularly insect-pollinated crops which are functionally dioecious. These crops require insects to move pollen between separate plants which are functionally male or female. While honey bees are typically considered the most important crop pollinator species, many other insects are known to visit crops but the pollination contribution of the full diversity of these flower visitors is poorly understood. In this study, we examine the role of diverse insect pollinators for two kiwifruit cultivars as model systems for dioecious crops: Actinidia chinensis var. deliciosa 'Hayward' (a green-fleshed variety) and A. chinensis var. chinensis 'Zesy002' (a gold-fleshed variety). In our round-the-clock insect surveys, we identified that psychodid flies and mosquitoes were the second and third most frequent floral visitors after honey bees (Apis mellifera L), but further work is required to investigate their pollination efficiency. Measures of single-visit pollen deposition identified that several insects, including the bees Leioproctus spp. and Bombus spp. and the flies Helophilus hochstetteri and Eristalis tenax, deposited a similar amount of pollen on flowers as honey bees (Apis mellifera). Due to their long foraging period and high pollen deposition, we recommend the development of strategies to boost populations of Bombus spp., Eristalis tenax and other hover flies, and unmanaged bees for use as synergistic pollinators alongside honey bees.
Asunto(s)
Actinidia , Culicidae , Abejas , Animales , Polinización , Insectos , Flores , Productos AgrícolasRESUMEN
Mutualistic plant-pollinator interactions are critical for the functioning of both non-managed and agricultural systems. Mathematical models of plant-pollinator interactions can help understand key determinants in pollination success. However, most previous models have not addressed pollinator behavior and plant biology combined. Information generated from such a model can inform optimal design of crop orchards and effective utilization of managed pollinators like western honey bees (Apis mellifera), and help generate hypotheses about the effects of management practices and cultivar selection. We expect that the number of honey bees per flower and male to female flower ratio will influence fruit yield. To test the relative importance of these effects, both singly and simultaneously, we utilized a delay differential equation model combined with Latin hypercube sampling for sensitivity analysis. Empirical data obtained from historical records and collected in kiwifruit (Actinidia chinensis) orchards in New Zealand were used to parameterize the model. We found that, at realistic bee densities, the optimal orchard had 65-75% female flowers, and the most benefit was gained from the first 6-8 bees/1000 flowers, with diminishing returns thereafter. While bee density significantly impacted fruit production, plant-based parameters-flower density and male:female flower ratio-were the most influential. The predictive model provides strategies for improving crop management, such as choosing cultivars which have their peak bloom on the same day, increasing the number of flowers with approximately 70% female flowers in the orchard, and placing enough hives to maintain more than 6 bees per 1000 flowers to optimize yield.
Asunto(s)
Actinidia/fisiología , Abejas/fisiología , Polinización , Algoritmos , Animales , Producción de Cultivos , Femenino , Frutas/crecimiento & desarrollo , Masculino , Modelos Teóricos , Nueva Zelanda , Densidad de PoblaciónRESUMEN
Approximately one-third of our food globally comes from insect-pollinated crops. The dependence on pollinators has been linked to yield instability, which could potentially become worse in a changing climate. Insect-pollinated crops produced via hybrid breeding (20% of fruit and vegetable production globally) are especially at risk as they are even more reliant on pollinators than open-pollinated plants. We already observe a wide range of fruit and seed yields between different cultivars of the same crop species, and it is unknown how existing variation will be affected in a changing climate. In this study, we examined how three hybrid carrot varieties with differential performance in the field responded to three temperature regimes (cooler than the historical average, average, and warmer that the historical average). We tested how temperature affected the plants' ability to set seed (seed set, pollen viability) as well as attract pollinators (nectar composition, floral volatiles). We found that there were significant intrinsic differences in nectar phenolics, pollen viability, and seed set between the carrot varieties, and that higher temperatures did not exaggerate those differences. However, elevated temperature did negatively affect several characteristics relating to the attraction and reward of pollinators (lower volatile production and higher nectar sugar concentration) across all varieties, which may decrease the attractiveness of this already pollinator-limited crop. Given existing predictions of lower pollinator populations in a warmer climate, reduced attractiveness would add yet another challenge to future food production.