Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Pestic Biochem Physiol ; 195: 105577, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37666603

RESUMEN

Aedes aegypti, an important vector in the transmission of human diseases, has developed resistance to two commonly used classes of insecticides, pyrethroids and organophosphates, in populations worldwide. This study examined sensitivity/resistance to chlorpyrifos, fenitrothion, malathion, deltamethrin, permethrin, and ß-cyfluthrin, along with possible metabolic detoxification and target site insensitivity, in three Aedes aegypti mosquito strains. The resistant strain (PR) had developed high levels of resistance to all three pyrethroid insecticides compared to a susceptible population, with 6, 500-, 3200- and 17,000-fold resistance to permethrin, ß-cyfluthrin, and deltamethrin, respectively. A newly emerged Ae. aegypti population collected from St. Augustine, Florida (AeStA) showed elevated levels of resistance to malathion (12-fold) and permethrin (25-fold). Synergists DEF (S,S,S,-tributyl phosphorotrithioate) and DEM (diethyl maleate) showed no or minor effects on insecticide resistance in both the AeStA and PRG20strains, but PBO (piperonyl butoxide) completely abolished resistance to both malathion and permethrin in AeStA and partially suppressed resistance in PR. The voltage-gated sodium channel sequences were examined to explore the mechanism that only partially inhibited the suppression of resistance to PBO in PR. Two mutations, V1016G/I and F1534C substitutions, both of which are associated with the development of pyrethroid resistance, were identified in the PRG20 strain but not in AeStA. These results suggest that while cytochrome P450 mediated detoxification may not be solely responsible, it is the major mechanism governing the development of resistance in AeStA. Both P450 mediated detoxification and target site insensitivity through the mutations in the voltage-gated sodium channel contribute to the high levels of resistance in the PRG20 strain.


Asunto(s)
Aedes , Insecticidas , Humanos , Animales , Aedes/genética , Permetrina , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Malatión/farmacología , Mosquitos Vectores
2.
BMC Genomics ; 23(1): 721, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273137

RESUMEN

BACKGROUND: Homalodisca vitripennis Germar, the glassy-winged sharpshooter, is an invasive insect in California and a critical threat to agriculture through its transmission of the plant pathogen, Xylella fastidiosa. Quarantine, broad-spectrum insecticides, and biological control have been used for population management of H. vitripennis since its invasion and subsequent proliferation throughout California. Recently wide-spread neonicotinoid resistance has been detected in populations of H. vitripennis in the southern portions of California's Central Valley. In order to better understand potential mechanisms of H. vitripennis neonicotinoid resistance, we performed RNA sequencing on wild-caught insecticide-resistant and relatively susceptible sharpshooters to profile their transcriptome and population structure. RESULTS: We identified 81 differentially expressed genes with higher expression in resistant individuals. The significant largest differentially expressed candidate gene linked to resistance status was a cytochrome P450 gene with similarity to CYP6A9. Furthermore, we observed an over-enrichment of GO terms representing functions supportive of roles in resistance mechanisms (cytochrome P450s, M13 peptidases, and cuticle structural proteins). Finally, we saw no evidence of broad-scale population structure, perhaps due to H. vitripennis' relatively recent introduction to California or due to the relatively small geographic scale investigated here. CONCLUSIONS: In this work, we characterized the transcriptome of insecticide-resistant and susceptible H. vitripennis and identified candidate genes that may be involved in resistance mechanisms for this species. Future work should seek to build on the transcriptome profiling performed here to confirm the role of the identified genes, particularly the cytochrome P450, in resistance in H. vitripennis. We hope this work helps aid future population management strategies for this and other species with growing insecticide resistance.


Asunto(s)
Hemípteros , Insecticidas , Animales , Citocromos/genética , Citocromos/metabolismo , Hemípteros/genética , Hemípteros/metabolismo , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Insecticidas/metabolismo , Neonicotinoides , Péptido Hidrolasas/genética , Transcriptoma
3.
J Econ Entomol ; 116(2): 560-564, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36708025

RESUMEN

The glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is an important vector of bacterial Xyllela diseases throughout the southern and southwestern portions of the United States. Strong insect control measures, such that population densities of the insect vector are significantly reduced, are often necessary to limit the spread of Xylella fastidiosa. Glassy-winged sharpshooter populations within the Central Valley of California have developed a high resistance to imidacloprid (resistance ratio greater than 3,200) and tolerance to pyrethroids (ratio of less than 10) due to frequent applications of these materials. The purpose of this study was to determine the potential effects of insecticide resistance upon a variety of sharpshooter life history parameters associated with reproductive fitness. Our results indicate that individuals from susceptible populations of glassy-winged sharpshooters exhibited significantly higher fecundity and longer adult lifespans than those from the resistant populations. Additionally, resistant individuals were on average slightly larger than susceptible individuals. These results provide a strong indication that resistance to neonicotinoids imposes a reproductive fitness cost in an insecticide-free environment.


Asunto(s)
Hemípteros , Insecticidas , Animales , Resistencia a los Insecticidas , Hemípteros/microbiología , Control de Insectos , Densidad de Población
4.
Environ Sci Pollut Res Int ; 30(32): 79269-79281, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37284949

RESUMEN

Animals face many natural challenges, and humans have added to this burden by applying potentially harmful herbicides and unintentionally introducing competitors. We examine the recently introduced Velarifictorus micado Japanese burrowing cricket which shares the same microhabitat and mating season as the native Gryllus pennsylvanicus field cricket. In this study, we assess the combined effects of Roundup (glyphosate-based herbicide) and a lipopolysaccharide (LPS) immune challenge on both crickets. In both species, an immune challenge reduced the numbers of eggs that the female laid; however, this effect was much larger in G. pennsylvanicus. Conversely, Roundup caused both species to increase egg production, potentially representing a terminal investment strategy. When exposed to both an immune challenge and herbicide, G. pennsylvanicus fecundity was harmed more than V. micado fecundity. Furthermore, V. micado females laid significantly more eggs than G. pennsylvanicus, suggesting that introduced V. micado may have a competitive edge in fecundity over native G. pennsylvanicus. LPS and Roundup each had differing effects on male G. pennsylvanicus and V. micado calling effort. Overall, introduced male V. micado spent significantly more time calling than native G. pennsylvanicus, which could potentially facilitate the spread of this introduced species. Despite the population-level spread of introduced V. micado, in our study, this species did not outperform native G. pennsylvanicus in tolerating immune and chemical challenge. Although V. micado appears to possess traits that make this introduced species successful in colonizing new habitats, it may be less successful in traits that would allow it to outcompete a native species.


Asunto(s)
Gryllidae , Herbicidas , Animales , Humanos , Masculino , Femenino , Lipopolisacáridos , Reproducción , Fertilidad
5.
mSphere ; 8(5): e0026723, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37800904

RESUMEN

The glassy-winged sharpshooter, Homalodisca vitripennis Germar, is an invasive xylem-feeding leafhopper with a devastating economic impact on California agriculture through transmission of the plant pathogen, Xylella fastidiosa. While studies have focused on X. fastidiosa or known symbionts of H. vitripennis, little work has been done at the scale of the microbiome (the bacterial community) or mycobiome (the fungal community). Here, we characterize the mycobiome and the microbiome of H. vitripennis across Southern California and explore correlations with captivity and host insecticide resistance status. Using high-throughput sequencing of the ribosomal internal transcribed spacer 1 region and the 16S rRNA gene to profile the mycobiome and microbiome, respectively, we found that while the H. vitripennis mycobiome significantly varied across Southern California, the microbiome did not. We also observed a significant difference in both the mycobiome and microbiome between captive and wild H. vitripennis. Finally, we found that the mycobiome, but not the microbiome, was correlated with insecticide resistance status in wild H. vitripennis. This study serves as a foundational look at the H. vitripennis mycobiome and microbiome across Southern California. Future work should explore the putative link between microbes and insecticide resistance status and investigate whether microbial communities should be considered in H. vitripennis management practices. IMPORTANCE The glassy-winged sharpshooter is an invasive leafhopper that feeds on the xylem of plants and transmits the devastating pathogen, Xylella fastidiosa, resulting in significant economic damage to California's agricultural system. While studies have focused on this pathogen or obligate symbionts of the glassy-winged sharpshooter, there is limited knowledge of the bacterial and fungal communities that make up its microbiome and mycobiome. To address this knowledge gap, we explored the composition of the mycobiome and the microbiome of the glassy-winged sharpshooter across Southern California and identified differences associated with geography, captivity, and host insecticide resistance status. Understanding sources of variation in the microbial communities associated with the glassy-winged sharpshooter is an important consideration for developing management strategies to control this invasive insect. This study is a first step toward understanding the role microbes may play in the glassy-winged sharpshooter's resistance to insecticides.


Asunto(s)
Hemípteros , Microbiota , Micobioma , Animales , ARN Ribosómico 16S/genética , Hemípteros/microbiología , Geografía
6.
Sci Rep ; 12(1): 6428, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440677

RESUMEN

CRISPR/Cas9 technology enables the extension of genetic techniques into insect pests previously refractory to genetic analysis. We report the establishment of genetic analysis in the glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, which is a significant leafhopper pest of agriculture in California. We use a novel and simple approach of embryo microinjection in situ on the host plant and obtain high frequency mutagenesis, in excess of 55%, of the cinnabar and white eye pigmentation loci. Through pair matings, we obtained 100% transmission of w and cn alleles to the G3 generation and also established that both genes are located on autosomes. Our analysis of wing phenotype revealed an unexpected discovery of the participation of pteridine pigments in wing and wing-vein coloration, indicating a role for these pigments beyond eye color. We used amplicon sequencing to examine the extent of off-target mutagenesis in adults arising from injected eggs, which was found to be negligible or non-existent. Our data show that GWSS can be easily developed as a genetic model system for the Hemiptera, enabling the study of traits that contribute to the success of invasive pests and vectors of plant pathogens. This will facilitate novel genetic control strategies.


Asunto(s)
Sistemas CRISPR-Cas , Hemípteros , Animales , Sistemas CRISPR-Cas/genética , Hemípteros/genética , Pigmentación/genética
7.
Nat Commun ; 11(1): 4942, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009375

RESUMEN

Anderson localisation -the inhibition of wave propagation in disordered media- is a surprising interference phenomenon which is particularly intriguing in two-dimensional (2D) systems. While an ideal, non-interacting 2D system of infinite size is always localised, the localisation length-scale may be too large to be unambiguously observed in an experiment. In this sense, 2D is a marginal dimension between one-dimension, where all states are strongly localised, and three-dimensions, where a well-defined phase transition between localisation and delocalisation exists as the energy is increased. Here, we report the results of an experiment measuring the 2D transport of ultracold atoms between two reservoirs, which are connected by a channel containing pointlike disorder. The design overcomes many of the technical challenges that have hampered observation of localisation in previous works. We experimentally observe exponential localisation in a 2D ultracold atom system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA