Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Scand J Med Sci Sports ; 34(1): e14520, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37839051

RESUMEN

INTRODUCTION: This study examined the impact of different upper-torso sportswear technologies on the performance and physiological heat strain of well-trained and national-level athletes during prolonged running in moderately hot conditions. METHODS: A randomized crossover design was employed in which 20 well-trained (n = 16) and national-level (n = 4) athletes completed four experimental trials in moderately hot conditions (35°C, 30% relative humidity). In each trial, participants ran at 70% of their peak oxygen uptake (70% V̇O2peak ) for 60 min, while wearing a different upper-body garment: cotton t-shirt, t-shirt with sweat-wicking fabric, compression t-shirt, and t-shirt with aluminum dots lining the inside of the upper back of the garment. Running speed was adjusted to elicit the predetermined oxygen consumption associated with 70% V̇O2peak . Physiological (core and skin temperatures, total body water loss, and urine specific gravity) and perceptual (thermal comfort and sensation, ratings of perceived exertion, and garment cooling functionality) parameters along with running speed at 70% V̇O2peak were continuously recorded. RESULTS: No significant differences were observed between the four garments for running speed at 70% V̇O2peak , physiological heat strain, and perceptual responses (all p > 0.05). The tested athletes reported larger areas of perceived suboptimal cooling functionality in the cotton t-shirt and the t-shirt with aluminum dots relative to the sweat-wicking and compression t-shirts (d: 0.43-0.52). CONCLUSION: There were not differences among the tested garments regarding running speed at 70% V̇O2peak , physiological heat strain, and perceptual responses in well-trained and national-level endurance athletes exercising in moderate heat.


Asunto(s)
Regulación de la Temperatura Corporal , Carrera , Humanos , Aluminio , Temperatura Corporal , Regulación de la Temperatura Corporal/fisiología , Frecuencia Cardíaca/fisiología , Calor , Carrera/fisiología , Temperatura Cutánea , Sudoración , Estudios Cruzados
2.
Eur J Appl Physiol ; 124(7): 2153-2160, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38430262

RESUMEN

PURPOSE: Accurately measuring sweat sodium concentration ([Na+]) in the field is advantageous for coaches, scientists, and dieticians looking to tailor hydration strategies. The MX3 hydration testing system is a new portable analyser that uses pre-calibrated biosensors to measure sweat [Na+]. This study aimed to assess the validity and reliability of the MX3 hydration testing system. METHODS: Thirty-one (11 females) recreationally active participants completed one experimental trial. During this trial, participants exercised at a self-selected pace for 45 min in a warm environment (31.5 ± 0.8 °C, 63.2 ± 1.3% relative humidity). Sweat samples were collected from three measurement sites using absorbent patches. The samples were then analysed for sweat [Na+] using both the MX3 hydration testing system and the Horiba LAQUAtwin-NA-11. The reliability of the MX3 hydration testing system was determined following two measurements of the same sweat sample. RESULTS: The mean difference between measurements was 0.1 mmoL·L-1 (95% limits of agreement (LoA): - 9.2, 9.4). The analyser demonstrated a coefficient of variation (CV) of 5.6% and the standard error of measurement was 3.3 mmoL·L-1. When compared to the Horiba LAQUAtwin-NA-11, there was a mean difference of - 1.7 mmoL·L-1 (95% LoA: - 0.25 X ¯ , 0.25 X ¯ ) and the CV was 9.8%. CONCLUSION: The MX3 hydration testing system demonstrated very good single-trial reliability, moderate agreement and a very good CV relative to the Horiba LAQUAtwin-Na-11. To further validate its performance, the MX3 hydration testing system should be compared with analytical techniques known for superior reliability and validity.


Asunto(s)
Ejercicio Físico , Sodio , Sudor , Humanos , Sudor/química , Sudor/metabolismo , Femenino , Masculino , Reproducibilidad de los Resultados , Ejercicio Físico/fisiología , Sodio/análisis , Sodio/metabolismo , Adulto , Calor , Adulto Joven
3.
Br J Sports Med ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39029949

RESUMEN

OBJECTIVE: To evaluate the efficacy of the Fédération Internationale de Football Association (FIFA) cooling break policy against alternative cooling configurations in attenuating thermal strain during simulated football in the heat. METHODS: 12 males (age: 27±6 years, V̇O2peak: 61±7 mL/kg/min) completed five 90 min intermittent treadmill football match simulations in 40°C and 41% relative humidity (32°C wet-bulb globe temperature) with different cooling configurations: regular match without cooling breaks (REG), 3 min breaks without cooling (BRKno-cool), 3 min breaks with cooling (BRKcool: current FIFA policy; chilled fluid ingestion and ice towel across neck and shoulders), 5 min extended half-time without cooling breaks (ExtHTonly) and 3 min cooling breaks with 5 min ExtHT (ExtHTcool). Rectal temperature (Tre), heart rate, whole-body sweat rate (WBSR) and rating of perceived exertion (RPE) were recorded. Data are presented as mean (95% CIs). RESULTS: Final Tre was lower in BRKno-cool (0.20°C (0.01, 0.39), p=0.038), BRKcool (0.39°C (0.21, 0.57), p<0.001) and ExtHTcool (0.40°C (0.22, 0.58), p<0.001) than REG (39.1°C (38.8, 39.3)). Mean Tre was lower in ExtHTcool (38.2°C (38.0, 38.4)) than BRKcool (38.3°C (38.1, 38.5), p=0.018), BRKno-cool and ExtHTonly (38.4°C (38.2, 38.6), p<0.001) and REG (38.5°C (38.3, 38.7), p<0.001). Mean heart rate was lower during BRKcool (6 beats/min (4, 7), p<0.001) and ExtHTcool (7 beats/min (6, 8), p<0.001) compared with REG. WBSR was comparable across trials (p≥0.07) and RPE was attenuated during BRKcool (0.4 (0.1, 0.7), p=0.004) and ExtHTcool (0.5 (0.2, 0.7), p=0.002), compared with REG. CONCLUSION: BRKcool and ExtHTcool attenuated thermal, cardiovascular and perceptual strain during a simulated football match in the heat. Additional strategies may be required in field settings or under harsher conditions.

4.
Int J Sport Nutr Exerc Metab ; 34(2): 111-121, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211577

RESUMEN

The aim of this audit was to quantify female representation in research on heat adaptation. Using a standardized audit tool, the PubMed database was searched for heat adaptation literature from inception to February 2023. Studies were included if they investigated heat adaptation among female and male adults (≥18-50 years) who were free from noncommunicable diseases, with heat adaptation the primary or secondary outcome of interest. The number and sex of participants, athletic caliber, menstrual status, research theme, journal impact factor, Altmetric score, Field-Weighted Citation Impact, and type of heat exposure were extracted. A total of 477 studies were identified in this audit, including 7,707 participants with ∼13% of these being female. Most studies investigated male-only cohorts (∼74%, n = 5,672 males), with ∼5% (n = 360 females) including female-only cohorts. Of the 126 studies that included females, only 10% provided some evidence of appropriate methodological control to account for ovarian hormone status, with no study meeting best-practice recommendations. Of the included female participants, 40% were able to be classified to an athletic caliber, with 67% of these being allocated to Tier 2 (i.e., trained/developmental) or below. Exercise heat acclimation was the dominant method of heat exposure (437 interventions), with 21 studies investigating sex differences in exercise heat acclimation interventions. We recommend that future research on heat adaptation in female participants use methodological approaches that consider the potential impact of sexual dimorphism on study outcomes to provide evidence-based guidelines for female athletes preparing for exercise or competition in hot conditions.


Asunto(s)
Rendimiento Atlético , Termotolerancia , Adulto , Humanos , Masculino , Femenino , Aclimatación , Calor , Ejercicio Físico
5.
Am J Physiol Regul Integr Comp Physiol ; 323(2): R161-R168, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35670483

RESUMEN

Both adult females and children have been reported to have a lower sweating capacity and thus reduced evaporative heat loss potential that may increase their susceptibility to exertional hyperthermia in the heat. Compared with males, females have a lower maximal sweat rate and thus a theoretically lower maximum skin wettedness due to a lower sweat output per gland. Similarly, children have been suggested to be disadvantaged in high ambient temperatures due to a lower sweat production and therefore reduced evaporative capacity, despite modifications of heat transfer due to physical attributes and possible evaporative efficiency. The reported reductions in the sudomotor activity of females and children suggest a lower sweating capacity in girls. However, because of the complexities of isolating sex and maturation from the confounding effects of morphological differences (e.g., body surface area-to-mass ratio) and metabolic heat production, limited evidence exists supporting whether children, and, more specifically, girls are at a thermoregulatory disadvantage. Furthermore, a limited number of child-adult comparison studies involve females and very few studies have directly compared regional and whole body sudomotor activity between boys and girls. This minireview highlights the exercise-induced sudomotor response of females and children, summarizes previous research investigating the sudomotor response to exercise in girls, and suggests important areas for further research.


Asunto(s)
Temperatura Corporal , Trastornos de Estrés por Calor , Adulto , Temperatura Corporal/fisiología , Regulación de la Temperatura Corporal/fisiología , Femenino , Respuesta al Choque Térmico , Calor , Humanos , Masculino , Sudoración
6.
Med Sci Sports Exerc ; 56(4): 697-705, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38051094

RESUMEN

PURPOSE: This study aimed to investigate the associations of biological sex and aerobic fitness (i.e., V̇O 2peak ) on the change in gastrointestinal temperature (∆ Tgi ) and whole-body sweat rate (WBSR) of children exercising in warm conditions. METHODS: Thirty-eight children (17 boys, mean ± SD = 13.7 ± 1.2 yr; 21 girls, 13.6 ± 1.8 yr) walked for 45 min at a fixed rate of metabolic heat production (8 W·kg -1 ) in 30°C and 40% relative humidity. Biological sex and relative V̇O 2peak were entered as predictors into a Bayesian hierarchical generalized additive model for Tgi . For a subsample of 13 girls with measured body composition, body fat percent was entered into a separate hierarchical generalized additive model for Tgi . Sex, V̇O 2peak , and the evaporative requirement for heat balance ( Ereq ) were entered into a Bayesian hierarchical linear regression for WBSR. RESULTS: The mean ∆ Tgi for boys was 0.71°C (90% credible interval = 0.60-0.82) and for girls 0.78°C (0.68-0.88). A predicted 20 mL·kg -1 ·min -1 higher V̇O 2peak resulted in a 0.19°C (-0.03 to 0.43) and 0.24°C (0.07-0.40) lower ∆ Tgi in boys and girls, respectively. A predicted ~13% lower body fat in the subsample of girls resulted in a 0.15°C (-0.12 to 0.45) lower ∆ Tgi . When Ereq was standardized to the grand mean, the difference in WBSR between boys and girls was -0.00 L·h -1 (-0.06 to 0.06), and a 20-mL·kg -1 ·min -1 higher predicted V̇O 2peak resulted in a mean difference in WBSR of -0.07 L·h -1 (-0.15 to 0.00). CONCLUSIONS: Biological sex did not independently influence ∆ Tgi and WBSR in children. However, a higher predicted V̇O 2peak resulted in a lower ∆ Tgi of children, which was not associated with a greater WBSR, but may be related to differences in body fat percent between high and low fitness individuals.


Asunto(s)
Ejercicio Físico , Sudoración , Masculino , Niño , Femenino , Humanos , Temperatura , Teorema de Bayes , Regulación de la Temperatura Corporal , Calor , Consumo de Oxígeno
7.
Sports Med ; 54(3): 727-741, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38051495

RESUMEN

BACKGROUND: Athletes and military personnel are often expected to compete and work in hot and/or humid environments, where decrements in performance and an increased risk of exertional heat illness are prevalent. A physiological strategy for reducing the adverse effects of heat stress is to acclimatise to the heat. OBJECTIVE: The aim of this systematic review was to quantify the effects of relocating to a hotter climate to undergo heat acclimatisation in athletes and military personnel. ELIGIBILITY CRITERIA: Studies investigating the effects of heat acclimatisation in non-acclimatised athletes and military personnel via relocation to a hot climate for < 6 weeks were included. DATA SOURCES: MEDLINE, SPORTDiscus, CINAHL Plus with Full Text and Scopus were searched from inception to June 2022. RISK OF BIAS: A modified version of the McMaster critical review form was utilised independently by two authors to assess the risk of bias. DATA SYNTHESIS: A Bayesian multi-level meta-analysis was conducted on five outcome measures, including resting core temperature and heart rate, the change in core temperature and heart rate during a heat response test and sweat rate. Wet-bulb globe temperature (WBGT), daily training duration and protocol length were used as predictor variables. Along with posterior means and 90% credible intervals (CrI), the probability of direction (Pd) was calculated. RESULTS: Eighteen articles from twelve independent studies were included. Fourteen articles (nine studies) provided data for the meta-analyses. Whilst accounting for WBGT, daily training duration and protocol length, population estimates indicated a reduction in resting core temperature and heart rate of - 0.19 °C [90% CrI: - 0.41 to 0.05, Pd = 91%] and - 6 beats·min-1 [90% CrI: - 16 to 5, Pd = 83%], respectively. Furthermore, the rise in core temperature and heart rate during a heat response test were attenuated by - 0.24 °C [90% CrI: - 0.67 to 0.20, Pd = 85%] and - 7 beats·min-1 [90% CrI: - 18 to 4, Pd = 87%]. Changes in sweat rate were conflicting (0.01 L·h-1 [90% CrI: - 0.38 to 0.40, Pd = 53%]), primarily due to two studies demonstrating a reduction in sweat rate following heat acclimatisation. CONCLUSIONS: Data from athletes and military personnel relocating to a hotter climate were consistent with a reduction in resting core temperature and heart rate, in addition to an attenuated rise in core temperature and heart rate during an exercise-based heat response test. An increase in sweat rate is also attainable, with the extent of these adaptations dependent on WBGT, daily training duration and protocol length. PROSPERO REGISTRATION: CRD42022337761.


Asunto(s)
Trastornos de Estrés por Calor , Personal Militar , Humanos , Teorema de Bayes , Calor , Ejercicio Físico/fisiología , Atletas
8.
J Appl Physiol (1985) ; 136(6): 1440-1449, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38660730

RESUMEN

The purpose of this study was to investigate the influence of biological sex, independent of differences in aerobic fitness and body fatness, on the change in gastrointestinal temperature (ΔTgi) and whole body sweat rate (WBSR) of children exercising under uncompensable heat stress. Seventeen boys (means ± SD; 13.7 ± 1.3 yr) and 18 girls (13.7 ± 1.4 yr) walked for 45 min at a fixed rate of metabolic heat production per kg body mass (8 W·kg-1) in 40°C and 30% relative humidity. Sex and peak oxygen consumption (V̇o2peak) were entered into a Bayesian hierarchical general additive model (HGAM) for Tgi. Sex, V̇o2peak, and the evaporative requirement for heat balance (Ereq) were entered into a Bayesian hierarchical linear regression for WBSR. For 26 (12 M and 14 F) of the 35 children with measured body composition, body fat percentage was entered in a separate HGAM and hierarchical linear regression for Tgi and WBSR, respectively. Conditional on sex-specific mean V̇o2peak, ΔTgi was 1.00°C [90% credible intervals (Crl): 0.84, 1.16] for boys and 1.17°C [1.01, 1.33] for girls, with a difference of 0.17°C [-0.39, 0.06]. When sex differences in V̇o2peak were accounted for, the difference in ΔTgi between boys and girls was 0.01°C [-0.25, 0.22]. The difference in WBSR between boys and girls was 0.03 L·h-1 [-0.02, 0.07], when isolated from differences in Ereq. The difference in ΔTgi between boys and girls was -0.10°C [-0.38, 0.17] when sex differences in body fat (%) were accounted for. Biological sex did not independently influence the ΔTgi and WBSR of children exercising under uncompensable heat stress.NEW & NOTEWORTHY Limited studies have investigated the thermoregulatory responses of boys and girls exercising under uncompensable heat stress. Boys and girls often differ in physiological characteristics other than biological sex, such as aerobic fitness and body fat percentage, which may confound interpretations. We investigated the influence of biological sex on exercise thermoregulation in children, independent of differences in aerobic fitness and body fatness.


Asunto(s)
Regulación de la Temperatura Corporal , Ejercicio Físico , Sudoración , Humanos , Femenino , Masculino , Sudoración/fisiología , Ejercicio Físico/fisiología , Adolescente , Niño , Regulación de la Temperatura Corporal/fisiología , Temperatura Corporal/fisiología , Consumo de Oxígeno/fisiología , Respuesta al Choque Térmico/fisiología , Caracteres Sexuales , Teorema de Bayes , Calor , Factores Sexuales , Trastornos de Estrés por Calor/fisiopatología , Composición Corporal/fisiología
9.
Temperature (Austin) ; 11(3): 254-265, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193050

RESUMEN

This study aimed to investigate seasonal heat acclimatization in active adolescents following summer. Fifteen (5 females) active adolescents (14.6 ± 1.0 y) completed a 45-min heat response test (HRT) walking at 60% V ˙ O2peak in 40°C and 30% relative humidity before and after summer (i.e. November 2022 and March 2023). During the HRT, gastro-intestinal temperature (Tgi), skin temperature (Tsk), heart rate, local sweat rate (LSR) and whole-body sweat loss (WBSL) were recorded. Carbon monoxide rebreathing and dual-energy X-ray absorptiometry scans determined resting hematological measures and body composition. Participants completed physical activity (PA) diaries and wore an accelerometer for two one-week periods (pre- and post-summer). Daytime wet-bulb globe temperature (WBGT) was calculated for each summer day. Data are presented as posterior mean and 90% credible intervals. Participants reported 7 ± 4 h·wk-1 of outdoor PA, and daytime WBGT was 21.2 ± 4.6°C. Following summer, resting Tgi and heart rate were reduced by 0.2°C [-0.3, -0.1; probability of direction = 99%] and 7 beats·min-1 [-10, -3; 100%], respectively. During the HRT, there was an earlier onset of sweating (-0.2°C [-0.3, -0.0; 98%]), an attenuated rise of Tgi (0.2°C [-0.5, 0.0; 92%]) and mean Tsk changed by -0.2°C [-0.5, 0.1; 86%]. There was minimal evidence for heat adaptations in LSR or WBSL, hematological parameters or perceptual measures. This is the first study to demonstrate seasonal heat adaptations in active adolescents. Reductions in resting Tgi and exercising Tsk and a lower Tgi at the onset of sweating were associated with a smaller rise in Tgi during the HRT following summer.

10.
Sports Med ; 52(9): 2111-2128, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35460514

RESUMEN

BACKGROUND: Physiological heat adaptations can be induced following various protocols that use either artificially controlled (i.e. acclimation) or naturally occurring (i.e. acclimatisation) environments. During the summer months in seasonal climates, adequate exposure to outdoor environmental heat stress should lead to transient seasonal heat acclimatisation. OBJECTIVES: The aim of the systematic review was to assess the available literature and characterise seasonal heat acclimatisation during the summer months and identify key factors that influence the magnitude of adaptation. ELIGIBILITY CRITERIA: English language, full-text articles that assessed seasonal heat acclimatisation on the same sample of healthy adults a minimum of 3 months apart were included. DATA SOURCES: Studies were identified using first- and second-order search terms in the databases MEDLINE, SPORTDiscus, CINAHL Plus with Full Text, Scopus and Cochrane, with the last search taking place on 15 July 2021. RISK OF BIAS: Studies were independently assessed by two authors for the risk of bias using a modified version of the McMaster critical review form. DATA EXTRACTION: Data for the following outcome variables were extracted: participant age, sex, body mass, height, body fat percentage, maximal oxygen uptake, time spent exercising outdoors (i.e. intensity, duration, environmental conditions), heat response test (i.e. protocol, time between tests), core temperature, skin temperature, heart rate, whole-body sweat loss, whole-body and local sweat rate, sweat sodium concentration, skin blood flow and plasma volume changes. RESULTS: Twenty-nine studies were included in this systematic review, including 561 participants across eight countries with a mean summer daytime wet-bulb globe temperature (WBGT) of 24.9 °C (range: 19.5-29.8 °C). Two studies reported a reduction in resting core temperature (0.16 °C; p < 0.05), 11 reported an increased sweat rate (range: 0.03-0.53 L·h-1; p < 0.05), two observed a reduced heart rate during a heat response test (range: 3-8 beats·min-1; p < 0.05), and six noted a reduced sweat sodium concentration (range: - 22 to - 59%; p < 0.05) following summer. The adaptations were associated with a mean summer WBGT of 25.2 °C (range: 19.6-28.7 °C). LIMITATIONS: The available studies primarily focussed on healthy male adults and demonstrated large differences in the reporting of factors that influence the development of seasonal heat acclimatisation, namely, exposure time and duration, exercise task and environmental conditions. CONCLUSIONS: Seasonal heat acclimatisation is induced across various climates in healthy adults. The magnitude of adaptation is dependent on a combination of environmental and physical activity characteristics. Providing environmental conditions are conducive to adaptation, the duration and intensity of outdoor physical activity, along with the timing of exposures, can influence seasonal heat acclimatisation. Future research should ensure the documentation of these factors to allow for a better characterisation of seasonal heat acclimatisation. PROSPERO REGISTRATION: CRD42020201883.


Asunto(s)
Regulación de la Temperatura Corporal , Calor , Aclimatación/fisiología , Adulto , Regulación de la Temperatura Corporal/fisiología , Humanos , Masculino , Estaciones del Año , Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA