Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Clin Infect Dis ; 73(10): 1831-1839, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33639620

RESUMEN

BACKGROUND: Monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody prevalence can complement case reporting to inform more accurate estimates of SARS-CoV-2 infection burden, but few studies have undertaken repeated sampling over time on a broad geographic scale. METHODS: We performed serologic testing on a convenience sample of residual serum obtained from persons of all ages, at 10 sites in the United States from 23 March through 14 August 2020, from routine clinical testing at commercial laboratories. We standardized our seroprevalence rates by age and sex, using census population projections and adjusted for laboratory assay performance. Confidence intervals were generated with a 2-stage bootstrap. We used bayesian modeling to test whether seroprevalence changes over time were statistically significant. RESULTS: Seroprevalence remained below 10% at all sites except New York and Florida, where it reached 23.2% and 13.3%, respectively. Statistically significant increases in seroprevalence followed peaks in reported cases in New York, South Florida, Utah, Missouri, and Louisiana. In the absence of such peaks, some significant decreases were observed over time in New York, Missouri, Utah, and Western Washington. The estimated cumulative number of infections with detectable antibody response continued to exceed reported cases in all sites. CONCLUSIONS: Estimated seroprevalence was low in most sites, indicating that most people in the United States had not been infected with SARS-CoV-2 as of July 2020. The majority of infections are likely not reported. Decreases in seroprevalence may be related to changes in healthcare-seeking behavior, or evidence of waning of detectable anti-SARS-CoV-2 antibody levels at the population level. Thus, seroprevalence estimates may underestimate the cumulative incidence of infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Teorema de Bayes , Niño , Humanos , Estudios Seroepidemiológicos , Estados Unidos/epidemiología , Utah
2.
Clin Infect Dis ; 73(9): e3120-e3123, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33300579

RESUMEN

We compared severe acute respiratory syndrome coronavirus 2 seroprevalence estimated from commercial laboratory residual sera and a community household survey in metropolitan Atlanta during April and May 2020 and found these 2 estimates to be similar (4.94% vs 3.18%). Compared with more representative surveys, commercial sera can provide an approximate measure of seroprevalence.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Humanos , Laboratorios , Estudios Seroepidemiológicos , Encuestas y Cuestionarios
3.
Clin Infect Dis ; 72(12): e1004-e1009, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33252659

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), was first identified in Wuhan, China, in December 2019, with subsequent worldwide spread. The first US cases were identified in January 2020. METHODS: To determine if SARS-CoV-2-reactive antibodies were present in sera prior to the first identified case in the United States on 19 January 2020, residual archived samples from 7389 routine blood donations collected by the American Red Cross from 13 December 2019 to 17 January 2020 from donors resident in 9 states (California, Connecticut, Iowa, Massachusetts, Michigan, Oregon, Rhode Island, Washington, and Wisconsin) were tested at the Centers for Disease Control and Prevention for anti-SARS-CoV-2 antibodies. Specimens reactive by pan-immunoglobulin (pan-Ig) enzyme-linked immunosorbent assay (ELISA) against the full spike protein were tested by IgG and IgM ELISAs, microneutralization test, Ortho total Ig S1 ELISA, and receptor-binding domain/ACE2 blocking activity assay. RESULTS: Of the 7389 samples, 106 were reactive by pan-Ig. Of these 106 specimens, 90 were available for further testing. Eighty-four of 90 had neutralizing activity, 1 had S1 binding activity, and 1 had receptor-binding domain/ACE2 blocking activity >50%, suggesting the presence of anti-SARS-CoV-2-reactive antibodies. Donations with reactivity occurred in all 9 states. CONCLUSIONS: These findings suggest that SARS-CoV-2 may have been introduced into the United States prior to 19 January 2020.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Donantes de Sangre , China , Connecticut , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G , Iowa , Massachusetts , Michigan , Oregon , Rhode Island , Glicoproteína de la Espiga del Coronavirus , Washingtón , Wisconsin
4.
Biologicals ; 57: 9-20, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30458978

RESUMEN

Despite wide spread vaccination, the public health burden of pertussis remains substantial. Current acellular pertussis vaccines comprise upto five Bordetella pertussis (Bp) antigens. Performing an ELISA to quantify antibody for each antigen is laborious and challenging to apply to pediatric samples where serum volume may be limited. We developed a microsphere based multiplex antibody capture assay (MMACA) to quantify antibodies to five pertussis antigens; pertussis toxin, pertactin, filamentous hemagglutinin and fimbrial antigens 2/3, and adenylate cyclase toxin in a single reaction (5-plex) with a calibrated reference standard, QC reagents and SAS® based data analysis program. The goodness of fit (R2) of the standard curves for five analytes was ≥0.99, LLOQ 0.04-0.15 IU or AU/mL, accuracy 1.9%-23.8% (%E), dilutional linearity slopes 0.93-1.02 and regression coefficients r2 = 0.91-0.99. MMACA had acceptable precision within a median CV of 16.0%-22.8%. Critical reagents, antigen conjugated microsphere and reporter antibody exhibited acceptable (<12.3%) lot-lot variation. MMACA can be completed in <3 h, requires low serum volume (5µL/multiplex assay) and has fast data turnaround time (<1 min). MMACA has been successfully developed and validated as a sensitive, specific, robust and rugged method suitable for simultaneous quantification of anti-Bp antibodies in serum, plasma and DBS.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Bordetella pertussis/inmunología , Toxina del Pertussis/inmunología , Pruebas Serológicas/métodos , Anticuerpos Antibacterianos/sangre , Proteínas de la Membrana Bacteriana Externa/inmunología , Humanos , Reproducibilidad de los Resultados , Factores de Virulencia de Bordetella/inmunología
5.
Access Microbiol ; 6(2)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482357

RESUMEN

Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) is a novel human coronavirus that was identified in 2019. SARS-CoV-2 infection results in an acute, severe respiratory disease called coronavirus disease 2019 (COVID-19). The emergence and rapid spread of SARS-CoV-2 has led to a global public health crisis, which continues to affect populations across the globe. Real time reverse transcription polymerase chain reaction (rRT-PCR) is the reference standard test for COVID-19 diagnosis. Serological tests are valuable tools for serosurveillance programs and establishing correlates of protection from disease. This study evaluated the performance of one in-house enzyme linked immunosorbent assay (ELISA) utilizing the pre-fusion stabilized ectodomain of SARS-CoV-2 spike (S), two commercially available chemiluminescence assays Ortho VITROS Immunodiagnostic Products Anti-SARS-CoV-2 Total Reagent Pack and Abbott SARS-CoV-2 IgG assay and one commercially available Surrogate Virus Neutralization Test (sVNT), GenScript USA Inc., cPass SARS-CoV-2 Neutralization Antibody Detection Kit for the detection of SARS-CoV-2 specific antibodies. Using a panel of rRT-PCR confirmed COVID-19 patients' sera and a negative control group as a reference standard, all three immunoassays demonstrated high comparable positivity rates and low discordant rates. All three immunoassays were highly sensitive with estimated sensitivities ranging from 95.4-96.6 %. ROC curve analysis indicated that all three immunoassays had high diagnostic accuracies with area under the curve (AUC) values ranging from 0.9698 to 0.9807. High positive correlation was demonstrated among the conventional microneutralization test (MNT) titers and the sVNT inhibition percent values. Our study indicates that independent evaluations are necessary to optimize the overall utility and the interpretation of the results of serological tests. Overall, we demonstrate that all serological tests evaluated in this study are suitable for the detection of SARS-CoV-2 antibodies.

6.
Vaccine ; 41(28): 4183-4189, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37244808

RESUMEN

BACKGROUND: The mechanism for anaphylaxis following mRNA COVID-19 vaccination has been widely debated; understanding this serious adverse event is important for future vaccines of similar design. A mechanism proposed is type I hypersensitivity (i.e., IgE-mediated mast cell degranulation) to polyethylene glycol (PEG). Using an assay that, uniquely, had been previously assessed in patients with anaphylaxis to PEG, our objective was to compare anti-PEG IgE in serum from mRNA COVID-19 vaccine anaphylaxis case-patients and persons vaccinated without allergic reactions. Secondarily, we compared anti-PEG IgG and IgM to assess alternative mechanisms. METHODS: Selected anaphylaxis case-patients reported to U.S. Vaccine Adverse Event Reporting System December 14, 2020-March 25, 2021 were invited to provide a serum sample. mRNA COVID-19 vaccine study participants with residual serum and no allergic reaction post-vaccination ("controls") were frequency matched to cases 3:1 on vaccine and dose number, sex and 10-year age category. Anti-PEG IgE was measured using a dual cytometric bead assay (DCBA). Anti-PEG IgG and IgM were measured using two different assays: DCBA and a PEGylated-polystyrene bead assay. Laboratorians were blinded to case/control status. RESULTS: All 20 case-patients were women; 17 had anaphylaxis after dose 1, 3 after dose 2. Thirteen (65 %) were hospitalized and 7 (35 %) were intubated. Time from vaccination to serum collection was longer for case-patients vs controls (post-dose 1: median 105 vs 21 days). Among Moderna recipients, anti-PEG IgE was detected in 1 of 10 (10 %) case-patients vs 8 of 30 (27 %) controls (p = 0.40); among Pfizer-BioNTech recipients, it was detected in 0 of 10 case-patients (0 %) vs 1 of 30 (3 %) controls (p >n 0.99). Anti-PEG IgE quantitative signals followed this same pattern. Neither anti-PEG IgG nor IgM was associated with case status with both assay formats. CONCLUSION: Our results support that anti-PEG IgE is not a predominant mechanism for anaphylaxis post-mRNA COVID-19 vaccination.


Asunto(s)
Anafilaxia , Vacunas contra la COVID-19 , COVID-19 , Femenino , Humanos , Masculino , Anafilaxia/etiología , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Inmunoglobulina E , Inmunoglobulina G , Inmunoglobulina M , Inmunosupresores , Polietilenglicoles/efectos adversos , ARN Mensajero , Vacunación/efectos adversos
7.
J Clin Microbiol ; 49(6): 2210-5, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21471339

RESUMEN

Swine origin 2009 H1N1 influenza virus has spread globally to cause the first influenza pandemic of the 21st century. Serological studies can improve our understanding of the extent of human infection and risk factors associated with the transmission of this pandemic virus. The "gold standard" for serodiagnosis of human influenza virus infection is the detection of seroconversion between acute- and convalescent-stage samples. However, the timing of seroepidemiological investigations often precludes the collection of truly acute-phase sera, requiring development of serological criteria for evaluating convalescent-phase sera that optimize detection of true positives and true negatives. To guide seroepidemiological investigations into the spread of the novel 2009 pandemic H1N1 virus, we characterized serum antibody responses to 2009 H1N1 virus in 87 individuals with confirmed viral infection and 227 nonexposed U.S. individuals using microneutralization (MN) and hemagglutination inhibition (HI) assays. Sensitivity and specificity were determined for each assay alone and in combination for detection of 2009 H1N1 virus-specific antibodies in convalescent-phase sera. Although the HI assay was more specific for detecting antibody to 2009 H1N1, the MN assay was more sensitive, particularly for detecting low-titer seroconversions. A combination of titers (MN ≥ 40 and HI ≥ 20) provided the highest sensitivity (90%) and specificity (96%) for individuals aged <60 years and 92% specificity for adults aged ≥ 60 years for detection of serologically confirmed 2009 H1N1 infections in U.S. populations during the first pandemic waves. These studies provide an approach to optimize timely serological investigations for future pandemics or outbreaks of novel influenza viruses among humans.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/diagnóstico , Virología/métodos , Adolescente , Adulto , Anciano , Animales , Anticuerpos Antivirales/sangre , Niño , Preescolar , Pruebas de Inhibición de Hemaglutinación , Humanos , Lactante , Subtipo H1N1 del Virus de la Influenza A/inmunología , Persona de Mediana Edad , Pruebas de Neutralización , Sensibilidad y Especificidad , Pruebas Serológicas/métodos , Estados Unidos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA