Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Hand Surg Am ; 46(5): 427.e1-427.e8, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33358883

RESUMEN

PURPOSE: To test the effectiveness of a novel locking pin cap to attach a K-wire rigidly to a volar locking plate and resist fracture displacement compared with commercially available alternatives. METHODS: Two different methods of fracture fixation were tested on a total of 12 Sawbones models with volar shear distal radius fracture (6/group). The fragments were fixed with either 2 commercially available pin plates (industry standard) or a volar plate with 2 locking screws fixing the scaphoid facet and 2 pins locked to the plate with a novel locking pin cap in the lunate facet. Axial load conditioning was performed followed by sinusoidal loading to 250 N at 50 mm/s. A motion capture system was used to assess the relative movement of the fracture fragments relative to the intact shaft. The strength of the fixation construct was quantified by (1) the force required to achieve a 2-mm gap between the shaft and fracture fragments and (2) ultimate load to failure. RESULTS: One industry standard pin plate demonstrated disassociation of the pin from the plate after fatigue conditioning. This did not occur in the locking pin cap group. The locking pin cap construct group was able to sustain a significantly higher load compared with the industry standard when the construct was displaced to the 2-mm gap. The locking pin cap also significantly increased the ultimate load to failure compared with the industry standard. CONCLUSIONS: The novel locking pin cap creates a fixed-angle attachment of a K-wire to an existing locking screw hole in a plate. This fixed-angle K-wire is significantly stronger in preventing gap formation and resisting ultimate failure than commercially available plates that use bent K-wires. CLINICAL RELEVANCE: The development of novel techniques to secure small articular fragments may ultimately improve clinical outcomes.


Asunto(s)
Fracturas del Radio , Fenómenos Biomecánicos , Placas Óseas , Tornillos Óseos , Fijación Interna de Fracturas , Humanos , Fracturas del Radio/cirugía
2.
JBMR Plus ; 8(2): ziad012, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38505533

RESUMEN

The fracture behavior of bone is critically important for evaluating its mechanical competence and ability to resist fractures. Fracture toughness is an intrinsic material property that quantifies a material's ability to withstand crack propagation under controlled conditions. However, properly conducting fracture toughness testing requires the access to calibrated mechanical load frames and the destructive testing of bone samples, and therefore fracture toughness tests are clinically impractical. Impact microindentation mimicks certain aspects of fracture toughness measurements, but its relationship with fracture toughness remains unknown. In this study, we aimed to compare measurements of notched fracture toughness and impact microindentation in fresh and boiled bovine bone. Skeletally mature bovine bone specimens (n = 48) were prepared, and half of them were boiled to denature the organic matrix, while the other half remained preserved in frozen conditions. All samples underwent a notched fracture toughness test to determine their resistance to crack initiation (KIC) and an impact microindentation test using the OsteoProbe to obtain the Bone Material Strength index (BMSi). Boiling the bone samples increased the denatured collagen content, while mineral density and porosity remained unaffected. The boiled bones also showed significant reduction in both KIC (P < .0001) and the average BMSi (P < .0001), leading to impaired resistance of bone to crack propagation. Remarkably, the average BMSi exhibited a high correlation with KIC (r = 0.86; P < .001). A ranked order difference analysis confirmed the excellent agreement between the 2 measures. This study provides the first evidence that impact microindentation could serve as a surrogate measure for bone fracture behavior. The potential of impact microindentation to assess bone fracture resistance with minimal sample disruption could offer valuable insights into bone health without the need for cumbersome testing equipment and sample destruction.

3.
bioRxiv ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37609257

RESUMEN

The fracture behavior of bone is critically important for assessing its mechanical competence and ability to resist fractures. Fracture toughness, which quantifies a material's resistance to crack propagation under controlled geometry, is regarded as the gold standard for evaluating a material's resistance to fracture. However properly conducting this test requires access to calibrated mechanical load frames the destruction of the bone samples, making it impractical for obtaining clinical measurement of bone fracture. Impact microindentation offers a potential alternative by mimicking certain aspects of fracture toughness measurements, but its relationship with mechanistic fracture toughness remains unknown. In this study, we aimed to compare measurements of notched fracture toughness and impact microindentation in fresh and boiled bovine bone. Skeletally mature bovine bone specimens (n=48) were prepared, and half of them were boiled to denature the organic matrix, while the other half remained preserved in frozen conditions. Notched fracture toughness tests were conducted on all samples to determine Initiation toughness (KIC), and an impact microindentation test using the OsteoProbe was performed to obtain the Bone Material Strength index. Boiling the bone samples resulted increased the denatured collagen without affecting mineral density or porosity. The boiled bones also showed significant reduction in both KIC (p < 0.0001) and the average Bone Material Strength index (p < 0.0001), leading to impaired resistance of bone to crack propagation. Remarkably, the average Bone Material Strength index exhibited a high correlation with KIC (r = 0.86; p < 0.001). The ranked order difference analysis confirmed excellent agreement between the two measures. This study provides the first evidence that impact microindentation could serve as a surrogate measure for bone fracture behavior. The potential of impact microindentation to non-destructively assess bone fracture resistance could offer valuable insights into bone health without the need for elaborate testing equipment and sample destruction.

4.
Artículo en Inglés | MEDLINE | ID: mdl-35992525

RESUMEN

Type 2 diabetes mellitus (T2D) is an increasingly prevalent disease with numerous comorbidities including many in the spine. T2D is strongly linked with vertebral fractures, intervertebral disc (IVD) degeneration, and severe chronic spinal pain. Yet the causative mechanism for these musculoskeletal impairments remains unclear. The chronic hyperglycemic state in T2D promotes the formation of advanced glycation end-products (AGEs) in tissues, and the accumulation of AGEs may play a role in musculoskeletal complications by modifying the extracellular matrix, impairing cellular homeostasis, and perpetuating an inflammatory cascade via its receptor (RAGE). The AGE and RAGE associated alterations in extracellular matrix composition and morphological features of the vertebral bodies and IVDs are likely contributors to the incidence and severity of spinal pathologies in T2D. This review will broadly examine the effects of AGEs on tissues in the spine in the context of T2D, with an emphasis on the changes in the vertebrae and the IVD. Along with the clinical and epidemiological findings, we will provide an overview of preclinical rodent models of T2D that exhibit deficits in the IVD and vertebral bone. Elucidating the role of AGEs and RAGE will be crucial for understanding the disease mechanisms and translation therapies of musculoskeletal pathologies in T2D.

5.
Quant Imaging Med Surg ; 10(1): 57-65, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31956529

RESUMEN

BACKGROUND: Finite element models (FEMs) of medical images can provide information about the underlying tissue that cannot be obtained from the original images. Preforming an accurate simulation requires the careful experimental calibration of boundary conditions. Here we describe a method for deriving a geometric mesh for soft biological materials using a magnetic resonance imaging (MRI) system, and an experimental workflow for calibrating the boundary conditions and optimizing the mesh density in these simulations. METHODS: A three-dimensional image stack of a ballistic sphere gel, a bovine caudal intervertebral disc (IVD), and a human lumbar IVD were generated using a positional MRI system. These images were then segmented using a semi-automated process, converted to a tetrahedral mesh, and then modeled as a linear elastic solid. The mesh density was optimized based on simulation time and convergence with the experimental results. The modulus of the ballistic gel was determined experimentally, while the material properties for the nucleus pulposus (NP) and the annulus fibrosus (AF) within the bovine and human IVDs were assigned from literature. The simulation for the spherical gel and the bovine IVD matched the reaction forces determined experimentally in compression. We then simulated a 0.3 MPa compressive load on the human lumbar IVD at the optimal mesh density and material properties determined from the bovine model and then examined the resultant internal strains. RESULTS: The scaled mesh density demonstrated excellent correspondence with the experimental results, confirming that accuracy was not compromised. Both the ballistic gel and the IVD samples exhibited a wide range of internal strains. The NP of the IVD underwent greater deformation than the AF under loading. CONCLUSIONS: This study validated a strategy for mesh optimization and FEM of soft biological materials from data generated from MRI scans. This calibrated approach allows for the rapid examination of internal strain distributions medical images that can be performed on the order of minutes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA