Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Cell ; 70(4): 628-638.e5, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29775579

RESUMEN

Cell survival to replication stress depends on the activation of the Mec1ATR-Rad53 checkpoint response that protects the integrity of stalled forks and controls the origin firing program. Here we found that Mad2, a member of the spindle assembly checkpoint (SAC), contributes to efficient origin firing and to cell survival in response to replication stress. We show that Rad53 and Mad2 promote S-phase cyclin expression through different mechanisms: while Rad53 influences Clb5,6 degradation, Mad2 promotes their protein synthesis. We found that Mad2 co-sediments with polysomes and modulates the association of the translation inhibitor Caf204E-BP with the translation machinery and the initiation factor eIF4E. This Mad2-dependent translational regulatory process does not depend on other SAC proteins. Altogether our observations indicate that Mad2 has an additional function outside of mitosis to control DNA synthesis and collaborates with the Mec1-Rad53 regulatory axis to allow cell survival in response to replication stress.


Asunto(s)
Ciclinas/genética , Replicación del ADN , Proteínas Mad2/metabolismo , Mitosis , Biosíntesis de Proteínas , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Ciclinas/metabolismo , Proteínas Mad2/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Origen de Réplica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Mol Cell ; 67(2): 266-281.e4, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28648781

RESUMEN

Mec1ATR mediates the DNA damage response (DDR), integrating chromosomal signals and mechanical stimuli. We show that the PP2A phosphatases, ceramide-activated enzymes, couple cell metabolism with the DDR. Using genomic screens, metabolic analysis, and genetic and pharmacological studies, we found that PP2A attenuates the DDR and that three metabolic circuits influence the DDR by modulating PP2A activity. Irc21, a putative cytochrome b5 reductase that promotes the condensation reaction generating dihydroceramides (DHCs), and Ppm1, a PP2A methyltransferase, counteract the DDR by activating PP2A; conversely, the nutrient-sensing TORC1-Tap42 axis sustains DDR activation by inhibiting PP2A. Loss-of-function mutations in IRC21, PPM1, and PP2A and hyperactive tap42 alleles rescue mec1 mutants. Ceramides synergize with rapamycin, a TORC1 inhibitor, in counteracting the DDR. Hence, PP2A integrates nutrient-sensing and metabolic pathways to attenuate the Mec1ATR response. Our observations imply that metabolic changes affect genome integrity and may help with exploiting therapeutic options and repositioning known drugs.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN de Hongos/metabolismo , Metabolismo Energético , Genoma Fúngico , Inestabilidad Genómica , Proteína Fosfatasa 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ceramidas/metabolismo , Ceramidas/farmacología , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/metabolismo , Reparación del ADN/efectos de los fármacos , ADN de Hongos/genética , Activación Enzimática , Regulación Fúngica de la Expresión Génica , Genoma Fúngico/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolómica , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteína Metiltransferasas/genética , Proteína Metiltransferasas/metabolismo , Proteína Fosfatasa 2/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Sirolimus/farmacología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
PLoS Genet ; 18(3): e1010101, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35239666

RESUMEN

Glutamine analogs are potent suppressors of general glutamine metabolism with anti-cancer activity. 6-diazo-5-oxo-L-norleucine (DON) is an orally available glutamine analog which has been recently improved by structural modification for cancer treatment. Here, we explored the chemogenomic landscape of DON sensitivity using budding yeast as model organism. We identify evolutionarily conserved proteins that mediate cell resistance to glutamine analogs, namely Ura8CTPS1/2, Hpt1HPRT1, Mec1ATR, Rad53CHK1/CHK2 and Rtg1. We describe a function of Ura8 as inducible CTP synthase responding to inhibition of glutamine metabolism and propose a model for its regulation by CTP levels and Nrd1-dependent transcription termination at a cryptic unstable transcript. Disruption of the inducible CTP synthase under DON exposure hyper-activates the Mec1-Rad53 DNA damage response (DDR) pathway, which prevents chromosome breakage. Simultaneous inhibition of CTP synthase and Mec1 kinase synergistically sensitizes cells to DON, whereas CTP synthase over-expression hampers DDR mutant sensitivity. Using genome-wide suppressor screening, we identify factors promoting DON-induced CTP depletion (TORC1, glutamine transporter) and DNA breakage in DDR mutants. Together, our results identify CTP regulation and the Mec1-Rad53 DDR axis as key glutamine analog response pathways, and provide a rationale for the combined targeting of glutamine and CTP metabolism in DDR-deficient cancers.


Asunto(s)
Glutamina , Citidina Trifosfato , Glutamina/metabolismo
4.
EMBO J ; 34(10): 1371-84, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25820263

RESUMEN

The causal role of aneuploidy in cancer initiation remains under debate since mutations of euploidy-controlling genes reduce cell fitness but aneuploidy strongly associates with human cancers. Telomerase activation allows immortal growth by stabilizing telomere length, but its role in aneuploidy survival has not been characterized. Here, we analyze the response of primary human cells and murine hematopoietic stem cells (HSCs) to aneuploidy induction and the role of telomeres and the telomerase in this process. The study shows that aneuploidy induces replication stress at telomeres leading to telomeric DNA damage and p53 activation. This results in p53/Rb-dependent, premature senescence of human fibroblast, and in the depletion of hematopoietic cells in telomerase-deficient mice. Endogenous telomerase expression in HSCs and enforced expression of telomerase in human fibroblasts are sufficient to abrogate aneuploidy-induced replication stress at telomeres and the consequent induction of premature senescence and hematopoietic cell depletion. Together, these results identify telomerase as an aneuploidy survival factor in mammalian cells based on its capacity to alleviate telomere replication stress in response to aneuploidy induction.


Asunto(s)
Aneuploidia , Telomerasa/metabolismo , Telómero/metabolismo , Animales , Senescencia Celular/genética , Senescencia Celular/fisiología , Replicación del ADN/genética , Replicación del ADN/fisiología , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Telomerasa/genética , Telómero/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
Nucleic Acids Res ; 45(19): 11174-11192, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28977496

RESUMEN

One of the fastest cellular responses to genotoxic stress is the formation of poly(ADP-ribose) polymers (PAR) by poly(ADP-ribose)polymerase 1 (PARP1, or ARTD1). PARP1 and its enzymatic product PAR regulate diverse biological processes, such as DNA repair, chromatin remodeling, transcription and cell death. However, the inter-dependent function of the PARP1 protein and its enzymatic activity clouds the mechanism underlying the biological response. We generated a PARP1 knock-in mouse model carrying a point mutation in the catalytic domain of PARP1 (D993A), which impairs the kinetics of the PARP1 activity and the PAR chain complexity in vitro and in vivo, designated as hypo-PARylation. PARP1D993A/D993A mice and cells are viable and show no obvious abnormalities. Despite a mild defect in base excision repair (BER), this hypo-PARylation compromises the DNA damage response during DNA replication, leading to cell death or senescence. Strikingly, PARP1D993A/D993A mice are hypersensitive to alkylation in vivo, phenocopying the phenotype of PARP1 knockout mice. Our study thus unravels a novel regulatory mechanism, which could not be revealed by classical loss-of-function studies, on how PAR homeostasis, but not the PARP1 protein, protects cells and organisms from acute DNA damage.


Asunto(s)
Daño del ADN , Células Madre Embrionarias de Ratones/metabolismo , Poli ADP Ribosilación , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Dominio Catalítico/genética , Células Cultivadas , Reparación del ADN , Replicación del ADN/genética , Cinética , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Modelos Genéticos , Mutación , Poli(ADP-Ribosa) Polimerasas/genética
7.
PLoS Genet ; 9(8): e1003702, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23950734

RESUMEN

ATR activation is dependent on temporal and spatial interactions with partner proteins. In the budding yeast model, three proteins - Dpb11(TopBP1), Ddc1(Rad9) and Dna2 - all interact with and activate Mec1(ATR). Each contains an ATR activation domain (ADD) that interacts directly with the Mec1(ATR):Ddc2(ATRIP) complex. Any of the Dpb11(TopBP1), Ddc1(Rad9) or Dna2 ADDs is sufficient to activate Mec1(ATR) in vitro. All three can also independently activate Mec1(ATR) in vivo: the checkpoint is lost only when all three AADs are absent. In metazoans, only TopBP1 has been identified as a direct ATR activator. Depletion-replacement approaches suggest the TopBP1-AAD is both sufficient and necessary for ATR activation. The physiological function of the TopBP1 AAD is, however, unknown. We created a knock-in point mutation (W1147R) that ablates mouse TopBP1-AAD function. TopBP1-W1147R is early embryonic lethal. To analyse TopBP1-W1147R cellular function in vivo, we silenced the wild type TopBP1 allele in heterozygous MEFs. AAD inactivation impaired cell proliferation, promoted premature senescence and compromised Chk1 signalling following UV irradiation. We also show enforced TopBP1 dimerization promotes ATR-dependent Chk1 phosphorylation. Our data suggest that, unlike the yeast models, the TopBP1-AAD is the major activator of ATR, sustaining cell proliferation and embryonic development.


Asunto(s)
Proteínas Portadoras/genética , Proliferación Celular , Senescencia Celular/genética , Desarrollo Embrionario/genética , Alelos , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Portadoras/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Ratones , Fosforilación , Mutación Puntual , Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína/genética , Transducción de Señal
8.
Cell Rep ; 43(6): 114281, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38805395

RESUMEN

Survival from UV-induced DNA lesions relies on nucleotide excision repair (NER) and the Mec1ATR DNA damage response (DDR). We study DDR and NER in aging cells and find that old cells struggle to repair DNA and activate Mec1ATR. We employ pharmacological and genetic approaches to rescue DDR and NER during aging. Conditions activating Snf1AMPK rescue DDR functionality, but not NER, while inhibition of the TORC1-Sch9S6K axis restores NER and enhances DDR by tuning PP2A activity, specifically in aging cells. Age-related repair deficiency depends on Snf1AMPK-mediated phosphorylation of Sch9S6K on Ser160 and Ser163. PP2A activity in old cells is detrimental for DDR and influences NER by modulating Snf1AMPK and Sch9S6K. Hence, the DDR and repair pathways in aging cells are influenced by the metabolic tuning of opposing AMPK and TORC1 networks and by PP2A activity. Specific Sch9S6K phospho-isoforms control DDR and NER efficiency, specifically during aging.


Asunto(s)
Senescencia Celular , Daño del ADN , Reparación del ADN , Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fosforilación , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteína Fosfatasa 2/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Envejecimiento/metabolismo
9.
Expert Opin Drug Metab Toxicol ; : 1-23, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37995132

RESUMEN

BACKGROUND: Cardiotoxicity remains one of the most reported adverse drug reactions that lead to drug attrition during pre-clinical and clinical drug development. Drug-induced cardiotoxicity may develop as a functional change in cardiac electrophysiology (acute alteration of the mechanical function of the myocardium) and/or as a structural change, resulting in loss of viability and morphological damage to cardiac tissue. RESEARCH DESIGN AND METHODS: Non-clinical models with better predictive value need to be established to improve cardiac safety pharmacology. To this end, high-throughput RNA sequencing (ScreenSeq) was combined with high-content imaging (HCI) and Ca2+ transience (CaT) to analyze compound-treated human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). RESULTS: Analysis of hiPSC-CMs treated with 33 cardiotoxicants and 9 non-cardiotoxicants of mixed therapeutic indications facilitated compound clustering by mechanism of action, scoring of pathway activities related to cardiomyocyte contractility, mitochondrial integrity, metabolic state, diverse stress responses and the prediction of cardiotoxicity risk. The combination of ScreenSeq, HCI and CaT provided a high cardiotoxicity prediction performance with 89% specificity, 91% sensitivity and 90% accuracy. CONCLUSIONS: Overall, this study introduces mechanism-driven risk assessment approach combining structural, functional and molecular high-throughput methods for pre-clinical risk assessment of novel compounds.

10.
Commun Biol ; 5(1): 882, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-36030322

RESUMEN

Chromatin metabolism is frequently altered in cancer cells and facilitates cancer development. While cancer cells produce large amounts of histones, the protein component of chromatin packaging, during replication, the potential impact of histone density on cancer biology has not been studied systematically. Here, we show that altered histone density affects global histone acetylation, histone deactylase inhibitor sensitivity and altered mitochondrial proteome composition. We present estimates of nuclear histone densities in 373 cancer cell lines, based on Cancer Cell Line Encyclopedia data, and we show that a known histone regulator, HMGB1, is linked to histone density aberrations in many cancer cell lines. We further identify an E3 ubiquitin ligase interactor, DCAF6, and a mitochondrial respiratory chain assembly factor, CHCHD4, as histone modulators. As systematic characterization of histone density aberrations in cancer cell lines, this study provides approaches and resources to investigate the impact of histone density on cancer biology.


Asunto(s)
Histonas , Neoplasias , Acetilación , Cromatina , Histona Acetiltransferasas , Proteoma
11.
Dev Cell ; 56(18): 2607-2622.e6, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34534458

RESUMEN

Atg6Beclin 1 mediates autophagy and endosomal trafficking. We investigated how Atg6 influences replication stress. Combining genetic, genomic, metabolomic, and proteomic approaches, we found that the Vps34-Vps15-Atg6Beclin 1-Vps38UVRAG-phosphatydilinositol-3 phosphate (PtdIns(3)P) axis sensitizes cells to replication stress by favoring the degradation of plasma membrane amino acid (AA) transporters via endosomal trafficking and ESCRT proteins, while the PtdIns(3)P phosphatases Ymr1 and Inp53 promote survival to replication stress by reversing this process. An impaired AA uptake triggers activation of Gcn2, which attenuates protein synthesis by phosphorylating eIF2α. Mec1Atr-Rad53Chk1/Chk2 activation during replication stress further hinders translation efficiency by counteracting eIF2α dephosphorylation through Glc7PP1. AA shortage-induced hyperphosphorylation of eIF2α inhibits the synthesis of 65 stress response proteins, thus resulting in cell sensitization to replication stress, while TORC1 promotes cell survival. Our findings reveal an integrated network mediated by endosomal trafficking, translational control pathways, and checkpoint kinases linking AA availability to the response to replication stress.


Asunto(s)
Autofagia/fisiología , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/fisiología , Endosomas/metabolismo , Beclina-1/metabolismo , Fosforilación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Levaduras
12.
Nat Commun ; 11(1): 4154, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32814778

RESUMEN

The DNA damage response (DDR) coordinates DNA metabolism with nuclear and non-nuclear processes. The DDR kinase Rad53CHK1/CHK2 controls histone degradation to assist DNA repair. However, Rad53 deficiency causes histone-dependent growth defects in the absence of DNA damage, pointing out unknown physiological functions of the Rad53-histone axis. Here we show that histone dosage control by Rad53 ensures metabolic homeostasis. Under physiological conditions, Rad53 regulates histone levels through inhibitory phosphorylation of the transcription factor Spt21NPAT on Ser276. Rad53-Spt21 mutants display severe glucose dependence, caused by excess histones through two separable mechanisms: dampening of acetyl-coenzyme A-dependent carbon metabolism through histone hyper-acetylation, and Sirtuin-mediated silencing of starvation-induced subtelomeric domains. We further demonstrate that repression of subtelomere silencing by physiological Tel1ATM and Rpd3HDAC activities coveys tolerance to glucose restriction. Our findings identify DDR mutations, histone imbalances and aberrant subtelomeric chromatin as interconnected causes of glucose dependence, implying that DDR kinases coordinate metabolism and epigenetic changes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/metabolismo , Glucosa/metabolismo , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2/genética , Daño del ADN , Reparación del ADN , Silenciador del Gen , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina/genética , Serina/metabolismo , Telómero/genética , Factores de Transcripción/genética
13.
Nat Commun ; 11(1): 4828, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973141

RESUMEN

ATR responds to mechanical stress at the nuclear envelope and mediates envelope-associated repair of aberrant topological DNA states. By combining microscopy, electron microscopic analysis, biophysical and in vivo models, we report that ATR-defective cells exhibit altered nuclear plasticity and YAP delocalization. When subjected to mechanical stress or undergoing interstitial migration, ATR-defective nuclei collapse accumulating nuclear envelope ruptures and perinuclear cGAS, which indicate loss of nuclear envelope integrity, and aberrant perinuclear chromatin status. ATR-defective cells also are defective in neuronal migration during development and in metastatic dissemination from circulating tumor cells. Our findings indicate that ATR ensures mechanical coupling of the cytoskeleton to the nuclear envelope and accompanying regulation of envelope-chromosome association. Thus the repertoire of ATR-regulated biological processes extends well beyond its canonical role in triggering biochemical implementation of the DNA damage response.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Núcleo Celular/metabolismo , Estrés Mecánico , Citoesqueleto de Actina , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Encéfalo , Cromatina , Citoplasma , Citoesqueleto/metabolismo , Daño del ADN , Ratones Noqueados , Metástasis de la Neoplasia , Neurogénesis , Membrana Nuclear/metabolismo
15.
Genomics Proteomics Bioinformatics ; 12(6): 255-65, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25458086

RESUMEN

Cell cycle progression is coordinated with metabolism, signaling and other complex cellular functions. The investigation of cellular processes in a cell cycle stage-dependent manner is often the subject of modern molecular and cell biological research. Cell cycle synchronization and immunostaining of cell cycle markers facilitate such analysis, but are limited in use due to unphysiological experimental stress, cell type dependence and often low flexibility. Here, we describe high-content microscopy-assisted cell cycle phenotyping (hiMAC), which integrates high-resolution cell cycle profiling of asynchronous cell populations with immunofluorescence microscopy. hiMAC is compatible with cell types from any species and allows for statistically powerful, unbiased, simultaneous analysis of protein interactions, modifications and subcellular localization at all cell cycle stages within a single sample. For illustration, we provide a hiMAC analysis pipeline tailored to study DNA damage response and genomic instability using a 3-4-day protocol, which can be adjusted to any other cell cycle stage-dependent analysis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Microscopía Fluorescente/métodos , Transducción de Señal , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Ratones , Fenotipo
16.
Cell Rep ; 6(1): 182-95, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24388752

RESUMEN

The MRN complex (Mre11/Rad50/Nbs1) is important in double-strand break (DSB) recognition, end resection, replication fork stabilization, and ATM and ATR activation. Complete deletion of MRN is incompatible with cell and organism life, presumably due to replication-born DSBs; however, the underlying mechanism remains unknown. We devised a noninvasive high-content assay, termed high-content microscopy-assisted cell-cycle phenotyping (hiMAC), to investigate the fate of cells lacking Nbs1. Surprisingly, deletion of Nbs1 does not kill cells during replication. The primary lesions in Nbs1-deleted cells are replication intermediates that result from defective resolution rather than fork destabilization. These lesions are converted to DSBs in the subsequent G2 phase, which subsequently activate Chk1, delay G2 progression, and lead to chromosome instability. Nbs1-deleted cells establish a DSB equilibrium that permits cell cycling but activates p53, causing G1 and G2 arrest, and cell death. Thus, we identify a physiological role of Nbs1 in the resolution of stalled replication forks.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Proteínas Nucleares/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Ácido Anhídrido Hidrolasas , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Fase G2 , Eliminación de Gen , Proteína Homóloga de MRE11 , Ratones , Microscopía Fluorescente/métodos , Proteínas Nucleares/genética , Proteínas Quinasas/metabolismo
17.
DNA Repair (Amst) ; 12(8): 645-55, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23683352

RESUMEN

MCPH1 encodes BRCT-containing protein MCPH1/Microcephalin/BRIT1, mutations of which in humans cause autosomal recessive disorder primary microcephaly type 1 (MCPH1), characterized by a congenital reduction of brain size particularly in the cerebral cortex. We have shown previously that a deletion of Mcph1 in mice results in microcephaly because of a premature switch from symmetric to asymmetric division of the neuroprogenitors, which is regulated by MCPH1's function in the centrosome. Because MCPH1 has been implicated in ATM and ATR-mediated DNA damage response (DDR) and defective DDR is often associated with neurodevelopmental diseases, we wonder whether the DDR-related function of MCPH1 prevents microcephaly. Here, we show that a deletion of Mcph1 results in a specific reduction of the cerebral cortex at birth, which is persistent through life. Due to an effect on premature neurogenic production, Mcph1-deficient progenitors give rise to a high level of early-born neurons that form deep layers (IV-VI), while generate less late-born neurons that form a thinner outer layer (II-III) of the cortex. However, neuronal migration seems to be unaffected by Mcph1 deletion. Ionizing radiation (IR) induces a massive apoptosis in the Mcph1-null neocortex and also embryonic lethality. Finally, Mcph1 deletion compromises homologous recombination repair and increases genomic instability. Altogether, our data suggest that MCPH1 ensures proper neuroprogenitor expansion and differentiation not only through its function in the centrosome, but also in the DDR.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Daño del ADN , Microcefalia/genética , Animales , Apoptosis/efectos de la radiación , Proteínas de Ciclo Celular , Diferenciación Celular , Centrosoma/metabolismo , Centrosoma/patología , Proteínas Cromosómicas no Histona/metabolismo , Proteínas del Citoesqueleto , Reparación del ADN , Modelos Animales de Enfermedad , Eliminación de Gen , Técnicas de Inactivación de Genes , Inestabilidad Genómica , Ratones , Microcefalia/embriología , Microcefalia/patología , Neocórtex/embriología , Neocórtex/patología , Neocórtex/efectos de la radiación , Neuronas/citología , Neuronas/patología , Radiación Ionizante , Recombinación Genética
18.
Nat Commun ; 4: 2993, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24356582

RESUMEN

Damaged replication forks activate poly(ADP-ribose) polymerase 1 (PARP1), which catalyses poly(ADP-ribose) (PAR) formation; however, how PARP1 or poly(ADP-ribosyl)ation is involved in the S-phase checkpoint is unknown. Here we show that PAR, supplied by PARP1, interacts with Chk1 via a novel PAR-binding regulatory (PbR) motif in Chk1, independent of ATR and its activity. iPOND studies reveal that Chk1 associates readily with the unperturbed replication fork and that PAR is required for efficient retention of Chk1 and phosphorylated Chk1 at the fork. A PbR mutation, which disrupts PAR binding, but not the interaction with its partners Claspin or BRCA1, impairs Chk1 and the S-phase checkpoint activation, and mirrors Chk1 knockdown-induced hypersensitivity to fork poisoning. We find that long chains, but not short chains, of PAR stimulate Chk1 kinase activity. Collectively, we disclose a previously unrecognized mechanism of the S-phase checkpoint by PAR metabolism that modulates Chk1 activity at the replication fork.


Asunto(s)
Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Quinasas/metabolismo , Células 3T3 , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Células COS , Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Chlorocebus aethiops , Cromatina/química , Daño del ADN , Replicación del ADN , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ratones , Datos de Secuencia Molecular , Mutación , Fosforilación , Poli(ADP-Ribosa) Polimerasa-1 , Unión Proteica , Proteínas Recombinantes/metabolismo , Fase S , Homología de Secuencia de Aminoácido
19.
DNA Repair (Amst) ; 11(2): 210-21, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22078264

RESUMEN

MRN (MRE11/RAD50/NBS) helps to activate ATM in response to DNA double strand breaks (DSBs) and also facilitates ATR activation by catalyzing the formation and extension of DNA single strand breaks (SSBs). Mutations of NBS1 and ATR cause human genomic instability syndrome NBS and ATR-Seckel, respectively, both of which feature neurodevelopmental defects. Whether these two DNA damage response components interact to prevent neuropathology is largely unknown. Here we show that a deletion of Nbs1 or Atr in the mouse central nervous system (CNS) results in neurodevelopmental defects characterized by reduced proliferation and increased apoptosis in embryonic brains. In contrast to Nbs1, deletion of Atr alone and both Nbs1 and Atr in the CNS causes early postnatal lethality, indicating a wider function of Atr. Importantly, deletion of Nbs1 and Atr together results in dramatic proliferation defects in neuroprogenitors. Whereas most apoptosis in the Nbs1-deleted cortex is restricted to the highly proliferating progenitors, Atr knockout induces apoptosis in both proliferating and non-proliferating neural cells. Consistently, an inducible deletion of Atr or Nbs1-Atr, but not of Nbs1, triggers a p53-independent cell death pathway in differentiated neurons, albeit elevated DNA damage in Nbs1 null neurons. Altogether, we identify a distinct function of Nbs1 and Atr in neurogenesis, namely a specific function of Nbs1 in proliferating neuroprogenitors and of Atr in both proliferating and non-dividing cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Neurogénesis , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/genética , Línea Celular , Proliferación Celular , Supervivencia Celular , Cerebelo/citología , Cerebelo/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Daño del ADN , Proteínas de Unión al ADN , Técnicas de Inactivación de Genes , Ratones , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética
20.
Cell Rep ; 2(6): 1498-504, 2012 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-23219553

RESUMEN

Ataxia telangiectasia mutated (ATM) protein kinase activation by DNA double-strand breaks (DSBs) requires the Mre11-Rad50-NBS1 (MRN) complex, whereas ATM interactor (ATMIN) protein is required for ATM signaling induced by changes in chromatin structure. We show here that NBS1 and ATMIN proteins compete for ATM binding and that this mechanism controls ATM function. DSB-induced ATM substrate phosphorylation was increased in atmin mutant cells. Conversely, NBS1 deficiency resulted in increased ATMIN-dependent ATM signaling. Thus, the absence of one cofactor increased flux through the alternative pathway. Notably, ATMIN deficiency rescued the cellular lethality of NBS1-deficient cells, and NBS1/ATMIN double deficiency resulted in complete abrogation of ATM signaling and profound radiosensitivity. Hence, ATMIN and NBS1 mediate all ATM signaling by DSBs, and increased ATMIN-dependent ATM signaling explains the different phenotypes of nbs1- and atm-mutant cells. Thus, the antagonism and redundancy of ATMIN and NBS1 constitute a crucial regulatory mechanism for ATM signaling and function.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Línea Celular , Proteínas de Unión al ADN/genética , Humanos , Ratones , Ratones Mutantes , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Factores de Transcripción , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA