Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 119: 146-153, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38555986

RESUMEN

BACKGROUND: Perinatal depression (including antenatal-, postnatal-, and depression that spans both timepoints) is a prevalent disorder with high morbidity that affects both mother and child. Even though the full biological blueprints of perinatal depression remain incomplete, multiple studies indicate that, at least for antenatal depression, the disorder has an inflammatory component likely linked to a dysregulation of the enzymatic kynurenine pathway. The production of neuroactive metabolites in this pathway, including quinolinic acid (QUIN), is upregulated in the placenta due to the multiple immunological roles of the metabolites during pregnancy. Since neuroactive metabolites produced by the pathway also may affect mood by directly affecting glutamate neurotransmission, we sought to investigate whether the placental expression of kynurenine pathway enzymes controlling QUIN production was associated with both peripheral inflammation and depressive symptoms during pregnancy. METHODS: 68 placentas obtained at birth were analyzed using qPCR to determine the expression of kynurenine pathway enzymes. Cytokines and metabolites were quantified in plasma using high-sensitivity electroluminescence and ultra-performance liquid chromatography, respectively. Maternal depressive symptoms were assessed using the Edinburgh Postnatal Depression Scale (EPDS) throughout pregnancy and the post-partum. Associations between these factors were assessed using robust linear regression with ranked enzymes. RESULTS: Low placental quinolinate phosphoribosyl transferase (QPRT), the enzyme responsible for degrading QUIN, was associated with higher IL-6 and higher QUIN/kynurenic acid ratios at the 3rd trimester. Moreover, women with severe depressive symptoms in the 3rd trimester had significantly lower placental expression of both QPRT and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD); impaired activity of these two enzymes leads to QUIN accumulation. CONCLUSION: Overall, our data support that a compromised placental environment, featuring low expression of critical kynurenine pathway enzymes is associated with increased levels of plasma cytokines and the dysregulated kynurenine metabolite pattern observed in depressed women during pregnancy.


Asunto(s)
Depresión , Inflamación , Quinurenina , Placenta , Ácido Quinolínico , Humanos , Femenino , Embarazo , Quinurenina/metabolismo , Quinurenina/sangre , Placenta/metabolismo , Adulto , Inflamación/metabolismo , Depresión/metabolismo , Ácido Quinolínico/metabolismo , Ácido Quinolínico/sangre , Citocinas/metabolismo , Complicaciones del Embarazo/metabolismo , Carboxiliasas/metabolismo , Pentosiltransferasa
2.
Mol Psychiatry ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938766

RESUMEN

Suicide rates have increased steadily world-wide over the past two decades, constituting a serious public health crisis that creates a significant burden to affected families and the society as a whole. Suicidal behavior involves a multi-factorial etiology, including psychological, social and biological factors. Since the molecular neural mechanisms of suicide remain vastly uncharacterized, we examined transcriptional- and methylation profiles of postmortem brain tissue from subjects who died from suicide as well as their neurotypical healthy controls. We analyzed temporal pole tissue from 61 subjects, largely free from antidepressant and antipsychotic medication, using RNA-sequencing and DNA-methylation profiling using an array that targets over 850,000 CpG sites. Expression of NPAS4, a key regulator of inflammation and neuroprotection, was significantly downregulated in the suicide decedent group. Moreover, we identified a total of 40 differentially methylated regions in the suicide decedent group, mapping to seven genes with inflammatory function. There was a significant association between NPAS4 DNA methylation and NPAS4 expression in the control group that was absent in the suicide decedent group, confirming its dysregulation. NPAS4 expression was significantly associated with the expression of multiple inflammatory factors in the brain tissue. Overall, gene sets and pathways closely linked to inflammation were significantly upregulated, while specific pathways linked to neuronal development were suppressed in the suicide decedent group. Excitotoxicity as well as suppressed oligodendrocyte function were also implicated in the suicide decedents. In summary, we have identified central nervous system inflammatory mechanisms that may be active during suicidal behavior, along with oligodendrocyte dysfunction and altered glutamate neurotransmission. In these processes, NPAS4 might be a master regulator, warranting further studies to validate its role as a potential biomarker or therapeutic target in suicidality.

3.
Acta Neuropathol ; 145(5): 541-559, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36991261

RESUMEN

Symptoms in the urogenital organs are common in multiple system atrophy (MSA), also in the years preceding the MSA diagnosis. It is unknown how MSA is triggered and these observations in prodromal MSA led us to hypothesize that synucleinopathy could be triggered by infection of the genitourinary tract causing ɑ-synuclein (ɑSyn) to aggregate in peripheral nerves innervating these organs. As a first proof that peripheral infections could act as a trigger in MSA, this study focused on lower urinary tract infections (UTIs), given the relevance and high frequency of UTIs in prodromal MSA, although other types of infection might also be important triggers of MSA. We performed an epidemiological nested-case control study in the Danish population showing that UTIs are associated with future diagnosis of MSA several years after infection and that it impacts risk in both men and women. Bacterial infection of the urinary bladder triggers synucleinopathy in mice and we propose a novel role of ɑSyn in the innate immune system response to bacteria. Urinary tract infection with uropathogenic E. coli results in the de novo aggregation of ɑSyn during neutrophil infiltration. During the infection, ɑSyn is released extracellularly from neutrophils as part of their extracellular traps. Injection of MSA aggregates into the urinary bladder leads to motor deficits and propagation of ɑSyn pathology to the central nervous system in mice overexpressing oligodendroglial ɑSyn. Repeated UTIs lead to progressive development of synucleinopathy with oligodendroglial involvement in vivo. Our results link bacterial infections with synucleinopathy and show that a host response to environmental triggers can result in ɑSyn pathology that bears semblance to MSA.


Asunto(s)
Atrofia de Múltiples Sistemas , Sinucleinopatías , Infecciones Urinarias , Ratones , Femenino , Animales , Sinucleinopatías/patología , Estudios de Casos y Controles , Escherichia coli , Ratones Transgénicos , alfa-Sinucleína , Atrofia de Múltiples Sistemas/complicaciones , Atrofia de Múltiples Sistemas/patología , Infecciones Urinarias/complicaciones , Inmunidad Innata
4.
Neurobiol Dis ; 166: 105654, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35143968

RESUMEN

Alpha-synuclein (α-syn) has been suggested to have many functions including, vesicle transport in neurons, transcriptional regulator, modulator of immune cell maturation and response, and a role as an antimicrobial peptide. This protein forms insoluble aggregates, called Lewy bodies, in several neurodegenerative diseases, termed synucleinopathies, including Parkinson's disease (PD), Multiple System Atrophy, and Lewy Body Dementia, and aggregates are also commonly found in Alzheimer's disease. Moreover, multiplications and point mutations in the gene cause rare autosomal dominant forms of parkinsonism, which resemble sporadic PD. It has been suggested that the accumulation of α-syn in the monomeric state followed by aggregation of the protein and seeding of further pathogenic α-syn aggregates are key steps in the pathogenesis of synucleinopathies. The triggers of α-syn aggregation in neurodegeneration are unknown, but inflammation caused by bacterial and viral pathogens or exposure to environmental toxins have been implicated. The purpose of this review is to present emerging evidence that α-syn may play a role in the immune response to pathogens. We present recent findings suggesting that upregulation of α-syn levels is a normal response to infections. We propose that under certain conditions (e.g., dysregulated inflammatory responses due to genetic predisposition and aging), monomeric α-syn will form oligomers that are taken up by nerve endings and undergo axonal transport to the central nervous system, where they can aggregate into pathogenic fibrils. Under unfavorable conditions, we suggest that this process can trigger neurodegenerative disease. Therefore, a deeper understanding of the roles of α-syn in the immune system could provide crucial insights into the origins of synucleinopathies.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Humanos , Cuerpos de Lewy/metabolismo , Atrofia de Múltiples Sistemas/metabolismo , Enfermedad de Parkinson/metabolismo , Regulación hacia Arriba , alfa-Sinucleína/metabolismo
5.
Neurobiol Dis ; 169: 105720, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35417751

RESUMEN

BACKGROUND: Motor symptoms of Parkinson's disease (PD) are apparent after a high proportion of dopamine neurons in the substantia nigra have degenerated. The vast majority of PD cases are sporadic, and the underlying pathobiological causes are poorly understood. Adults exhibit great variability in the numbers of nigral dopamine neurons, suggesting that factors during embryonic or early life regulate the development and physiology of dopaminergic neurons. Furthermore, exposure to infections and inflammation in utero has been shown to affect fetal brain development in models of schizophrenia and autism. Here, we utilize a mouse maternal infection model to examine how maternal herpesvirus infection impacts dopaminergic neuron-related gene and protein expression in the adult offspring. METHODS: Pregnant mice were injected with murine cytomegalovirus (MCMV), murine gamma herpes virus-68 (MHV68) or phosphate buffered saline (PBS) at embryonic day 8.5. Offspring were sacrificed at eight weeks of age and midbrains were processed for whole genome RNA sequencing, DNA methylation analysis, targeted protein expression and high-performance liquid chromatography for quantification of dopamine and its metabolites. RESULTS: The midbrain of adult offspring from MHV68 infected dams had significantly decreased expression of genes linked to dopamine neurons (Th, Lmx1b, and Foxa1) and increased Lrrk2, a gene involved in familial PD and PD risk that associates with neuroinflammation. Deconvolution analysis revealed that the proportion of dopamine neuron genes in the midbrain was reduced. There was an overall increase in DNA methylation in the midbrain of animals from MHV68-infected dams and pathway analyses indicated mitochondrial dysfunction, with reductions in genes associated with ATP synthesis, mitochondrial respiratory chain, and mitochondrial translation in the offspring of dams infected with MHV68. TIGAR (a negative regulator of mitophagy) and SDHA (mitochondrial complex II subunit) protein levels were increased, and the levels of 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum were increased in these offspring compared to offspring from uninfected control dams. No such changes were observed in the offspring of dams infected with MCMV. CONCLUSION: Our data suggest that maternal infection with Herpesviridae, specifically MHV68, can trigger changes in the development of the midbrain that impact dopamine neuron physiology in adulthood. Our work is of importance for the understanding of neuronal susceptibility underlying neurodegenerative disease, with particular relevance for PD.


Asunto(s)
Infecciones por Herpesviridae , Herpesviridae , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Femenino , Herpesviridae/metabolismo , Infecciones por Herpesviridae/metabolismo , Mesencéfalo/metabolismo , Ratones , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/metabolismo , Embarazo , Sustancia Negra/metabolismo
6.
Mov Disord ; 37(8): 1644-1653, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35723531

RESUMEN

BACKGROUND: The gut microbiome and its metabolites can impact brain health and are altered in Parkinson's disease (PD) patients. It has been recently demonstrated that PD patients have reduced fecal levels of the potent epigenetic modulator butyrate and its bacterial producers. OBJECTIVES: Here, we investigate whether the changes in the gut microbiome and associated metabolites are related to PD symptoms and epigenetic markers in leucocytes and neurons. METHODS: Stool, whole blood samples, and clinical data were collected from 55 PD patients and 55 controls. We performed DNA methylation analysis on whole blood samples and analyzed the results in relation to fecal short-chain fatty acid concentrations and microbiota composition. In another cohort, prefrontal cortex neurons were isolated from control and PD brains. We identified genome-wide DNA methylation by targeted bisulfite sequencing. RESULTS: We show that lower fecal butyrate and reduced counts of genera Roseburia, Romboutsia, and Prevotella are related to depressive symptoms in PD patients. Genes containing butyrate-associated methylation sites include PD risk genes and significantly overlap with sites epigenetically altered in PD blood leucocytes, predominantly neutrophils, and in brain neurons, relative to controls. Moreover, butyrate-associated methylated-DNA regions in PD overlap with those altered in gastrointestinal (GI), autoimmune, and psychiatric diseases. CONCLUSIONS: Decreased levels of bacterially produced butyrate are related to epigenetic changes in leucocytes and neurons from PD patients and to the severity of their depressive symptoms. PD shares common butyrate-dependent epigenetic changes with certain GI and psychiatric disorders, which could be relevant for their epidemiological relation. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Butiratos , Depresión/genética , Epigénesis Genética , Microbioma Gastrointestinal/genética , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/microbiología
7.
Mov Disord ; 35(11): 2028-2037, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32710594

RESUMEN

BACKGROUND: The objective of this study was to determine whether neurotoxic kynurenine metabolites, induced by inflammation, in plasma and cerebrospinal fluid (CSF) are associated with symptom severity and nigral pathology in Parkinson's disease (PD). METHODS: Clinical and MRI data were obtained from 97 PD and 89 controls. We used ultra-performance liquid chromatography to quantify kynurenine metabolites and high-sensitivity multiplex assays to quantify inflammation in plasma and CSF. We evaluated group-wise differences as well as associations between the biomarkers, motor and nonmotor symptoms, and nigral R2* (MRI metric reflecting iron content). RESULTS: PD subjects had >100% higher 3-hydroxykynurenine and 14% lower 3-hydroxyanthranilic acid in plasma. The 3-HK in plasma was closely associated with both symptom severity and disease duration. PD subjects also had 23% lower kynurenic acid in the CSF. Higher CSF levels of the excitotoxin quinolinic acid were associated with more severe symptoms, whereas lower levels of the neuroprotective kynurenic acid were linked to olfactory deficits. An elevated quinolinic acid/picolinic acid ratio in the CSF correlated with higher R2* values in the substantia nigra in the entire cohort. Plasma C-reactive protein and serum amyloid alpha were associated with signs of increased kynurenine pathway activity in the CSF of PD patients, but not in controls. CONCLUSIONS: In PD, the kynurenine pathway metabolite levels are altered in both the periphery and the central nervous system, and these changes are associated with symptom severity. Replication studies are warranted in other cohorts, and these can also explore if kynurenine metabolites might be PD biomarkers and/or are involved in PD pathogenesis. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Biomarcadores , Humanos , Quinurenina , Enfermedad de Parkinson/diagnóstico por imagen , Sustancia Negra/diagnóstico por imagen , Triptófano
8.
Brain Behav Immun ; 83: 239-247, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31698012

RESUMEN

Depression during pregnancy and the post-partum is common, with severe cases resulting in suicidal behavior. Despite the urgent and unmet medical need, the biological underpinnings of peri-partum depression remain unclear. It has been suggested that it is triggered by dynamic changes of the immune system during pregnancy and at delivery. Therefore, we investigated whether a pro-inflammatory status in plasma, together with changes in the kynurenine pathway activity, is associated with the development of severe depression and suicidal behavior in the post-partum. Our cross-sectional study targets a unique, understudied population in which the pronounced severity of symptoms required hospitalization. We analyzed plasma IL-1ß, IL-2, IL-6, IL-8, TNF-α, tryptophan, serotonin, kynurenine, nicotinamide, quinolinic- and kynurenic acids in post-partum women diagnosed with peripartum onset depression (PPD) and healthy controls (n = 165). We assessed depression severity using the Edinburgh Postnatal Depression Scale and suicidality using the Columbia-Suicide Severity Rating Scale. We found that increased plasma IL-6 and IL-8 and reductions of serotonin, IL-2 and quinolinic acid were associated with the severity of depressive symptoms and increased the risk for PPD. Moreover, women with lower serotonin levels were at an increased risk for suicidal behavior, even when adjusting for depression severity, psychosocial factors, age BMI, and medication. Our results indicate that severe depression in the post-partum involves dysregulation of the immune response and the kynurenine pathway, with a concomitant reduction in serotonin levels. We propose that inflammatory cytokines and the kynurenine pathway are potential treatment targets in PPD, opening up the possibility of novel therapeutic strategies targeting the peripartum.


Asunto(s)
Depresión Posparto/metabolismo , Depresión Posparto/fisiopatología , Inflamación/patología , Quinurenina/metabolismo , Periodo Posparto/psicología , Ideación Suicida , Adulto , Estudios Transversales , Femenino , Humanos , Inflamación/metabolismo , Embarazo
10.
Pteridines ; 27(3-4): 77-85, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28943719

RESUMEN

We previously reported that trait aggression, proposed as an endophenotype for suicidal behavior, is positively associated with Toxoplasma gondii (T. gondii) seropositivity in females, but not in males. Additionally, older males seropositive for T. gondii had lower scores on measures of trait aggression, including self-aggression. Trait aggression may be influenced by dopaminergic signaling, which is known to be moderated by gender and age, and potentially enhanced in T. gondii positives through the intrinsic production of dopamine by the microorganism. Therefore, we investigated associations between trait aggression and interactions between T. gondii enzyme-linked immunoabsorbant assay (ELISA) IgG titer-determined seropositivity and high-performance liquid chromatography- (HPLC-) measured blood levels of dopamine precursors phenylalanine (Phe), tyrosine (Tyr), and their ratio in a sample of 1000 psychiatrically healthy participants. Aggressive traits were assessed using the questionnaire for measuring factors of aggression (FAF), the German version of the Buss-Durkee hostility questionnaire. We found that 1) the decrease in trait aggression scores in T. gondii-positive older males was only present in individuals with a low Phe:Tyr ratio, and 2) that there was a positive correlation between Phe:Tyr ratio and total aggression and selected subscales of aggression in T. gondii-positive males, but not in T. gondii-negative males. These findings point toward a gender-specific reciprocal moderation by Phe:Tyr ratio and T. gondii seropositivity of their associations with aggression scores, and lead to experimental interventions geared to manipulating levels of dopamine precursors in selected T. gondii positive individuals with increased propensity for aggression.

11.
J Neuroinflammation ; 12: 163, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26338025

RESUMEN

BACKGROUND: Evidence from clinical studies and animal models show that inflammation can lead to the development of depression. Macrophage migration inhibitory factor (MIF) is an important multifunctional cytokine that is synthesized by several cell types in the brain. MIF can increase production of other cytokines, activates cyclooxygenase (COX)-2 and can counter-regulate anti-inflammatory effects of glucocorticoids. Increased plasma levels of MIF are associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation and depressive symptoms in patients. In contrast, MIF knockout (KO) mice have been found to exhibit increased depressive-like behaviour. The exact role for MIF in depression is therefore still controversial. To further understand the role of MIF in depression, we studied depressive-like behaviour in congenic male and female MIF KO mice and wild-type (WT) littermates and the associated neurobiological mechanisms underlying the behavioural outcome. METHODS: MIF KO and WT mice were tested for spontaneous locomotor activity in the open-field test, anhedonia-like behaviour in the sucrose preference test (SPT), as well as behavioural despair in the forced swim test (FST) and tail suspension test (TST). Brain and serum levels of cytokines, the enzymes COX-2 and indoleamine-2,3-dioxygenase (IDO) and the glucocorticoid hormone corticosterone were measured by RT-qPCR and/or high-sensitivity electrochemiluminescence-based multiplex immunoassays. Monoamines and metabolites were examined using HPLC. RESULTS: We found that MIF KO mice of both sexes displayed decreased depressive-like behaviour as measured in the FST. In the TST, a similar, but non-significant, trend was also found. IFN-γ levels were decreased, and dopamine metabolism increased in MIF KO mice. Decreased brain IFN-γ levels predicted higher striatal dopamine levels, and high dopamine levels in turn were associated with reduced depressive-like behaviour. In the SPT, there was a sex-specific discrepancy, where male MIF KO mice showed reduced anhedonia-like behaviour whereas female KO mice displayed increased anhedonia-like behaviour. Our results suggest that this relates to the increased corticosterone levels detected in female, but not male, MIF KO mice. CONCLUSIONS: Our findings support that MIF is involved in the generation of depressive-like symptoms, potentially by the effects of IFN-γ on dopamine metabolism. Our data further suggests a sex-specific regulation of the involved mechanisms.


Asunto(s)
Citocinas/metabolismo , Depresión/genética , Regulación de la Expresión Génica/genética , Inflamación/genética , Oxidorreductasas Intramoleculares/deficiencia , Factores Inhibidores de la Migración de Macrófagos/deficiencia , Animales , Monoaminas Biogénicas/metabolismo , Corticosterona/sangre , Citocinas/genética , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Femenino , Preferencias Alimentarias/fisiología , Suspensión Trasera/psicología , Oxidorreductasas Intramoleculares/genética , Factores Inhibidores de la Migración de Macrófagos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sacarosa/administración & dosificación , Edulcorantes/administración & dosificación , Natación/psicología
12.
Brain Behav Immun ; 43: 110-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25124710

RESUMEN

BACKGROUND: Patients with depression and suicidality suffer from low-grade neuroinflammation. Pro-inflammatory cytokines activate indoleamine 2,3-dioxygenase, an initial enzyme of the kynurenine pathway. This pathway produces neuroactive metabolites, including quinolinic- and kynurenic acid, binding to the glutamate N-methyl-d-aspartate-receptor, which is hypothesized to be part of the neural mechanisms underlying symptoms of depression. We therefore hypothesized that symptoms of depression and suicidality would fluctuate over time in patients prone to suicidal behavior, depending on the degree of inflammation and kynurenine metabolite levels in the cerebrospinal fluid (CSF). METHODS: We measured cytokines and kynurenine metabolites in CSF, collected from suicide attempters at repeated occasions over 2 years (total patient samples n=143, individuals n=30) and healthy controls (n=36). The association between the markers and psychiatric symptoms was assessed using the Montgomery Asberg Depression Rating Scale and the Suicide Assessment Scale. RESULTS: Quinolinic acid was increased and kynurenic acid decreased over time in suicidal patients versus healthy controls. Furthermore, we found a significant association between low kynurenic acid and severe depressive symptoms, as well as between high interleukin-6 levels and more severe suicidal symptoms. CONCLUSIONS: We demonstrate a long-term dysregulation of the kynurenine pathway in the central nervous system of suicide attempters. An increased load of inflammatory cytokines was coupled to more severe symptoms. We therefore suggest that patients with a dysregulated kynurenine pathway are vulnerable to develop depressive symptoms upon inflammatory conditions, as a result the excess production of the NMDA-receptor agonist quinolinic acid. This study provides a neurobiological framework supporting the use of NMDA-receptor antagonists in the treatment of suicidality and depression.


Asunto(s)
Citocinas/líquido cefalorraquídeo , Trastorno Depresivo/metabolismo , Inflamación/líquido cefalorraquídeo , Receptores de N-Metil-D-Aspartato/metabolismo , Ideación Suicida , Intento de Suicidio , Adulto , Femenino , Humanos , Ácido Quinurénico/líquido cefalorraquídeo , Quinurenina/líquido cefalorraquídeo , Masculino , Persona de Mediana Edad , Ácido Quinolínico/líquido cefalorraquídeo , Adulto Joven
13.
Brain Behav Immun ; 33: 183-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23911592

RESUMEN

Neuroinflammation may be involved in the pathophysiology of Parkinson's disease (PD) and specifically in non-motor symptoms such as depression, fatigue and cognitive impairment. The aim of this study was to measure inflammatory markers in cerebrospinal fluid (CSF) samples from PD patients and a reference group, and to investigate correlations between non-motor symptoms and inflammation. We quantified C-reactive protein (CRP), interleukin-6, tumor necrosis factor-alpha, eotaxin, interferon gamma-induced protein-10, monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein 1-ß in CSF samples from PD patients (N=87) and the reference group (N=33). Sixteen of the PD patients had a dementia diagnosis (PDD). We assessed symptoms of fatigue, depression, anxiety and cognitive function using the Functional Assessment of Chronic Illness Therapy-Fatigue, the Hospital Anxiety and Depression Scale, and the Mini Mental State Examination, respectively. There were no significant differences in mean levels of inflammatory markers between PD patients and the reference group. After controlling for age, gender and somatic illness, patients with PDD had significantly higher levels of CRP compared to non-demented PD patients (p=0.032) and the reference group (p=0.026). Increased levels of inflammatory markers in CSF were significantly associated with more severe symptoms of depression, anxiety, fatigue, and cognition in the entire PD group. After controlling for PD duration, age, gender, somatic illness and dementia diagnosis, high CRP levels were significantly associated with more severe symptoms of depression (p=0.010) and fatigue (p=0.008), and high MCP-1 levels were significantly associated with more severe symptoms of depression (p=0.032). Our results indicate that non-motor features of PD such as depression, fatigue, and cognitive impairment are associated with higher CSF levels of inflammatory markers.


Asunto(s)
Trastornos del Conocimiento/líquido cefalorraquídeo , Depresión/líquido cefalorraquídeo , Fatiga/líquido cefalorraquídeo , Mediadores de Inflamación/líquido cefalorraquídeo , Enfermedad de Parkinson/líquido cefalorraquídeo , Anciano , Proteína C-Reactiva/líquido cefalorraquídeo , Quimiocina CCL11/líquido cefalorraquídeo , Quimiocina CCL2/líquido cefalorraquídeo , Quimiocina CCL24/líquido cefalorraquídeo , Quimiocina CCL26 , Quimiocina CCL3/líquido cefalorraquídeo , Quimiocina CCL4/líquido cefalorraquídeo , Quimiocinas CC/líquido cefalorraquídeo , Trastornos del Conocimiento/complicaciones , Demencia/líquido cefalorraquídeo , Demencia/complicaciones , Demencia/diagnóstico , Depresión/complicaciones , Fatiga/complicaciones , Femenino , Humanos , Interleucina-6/líquido cefalorraquídeo , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico , Factor de Necrosis Tumoral alfa/líquido cefalorraquídeo
14.
Brain Sci ; 13(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36979315

RESUMEN

Suicide, a global health burden, represents the 17th leading cause of death worldwide (1.3%), but the 4th among young people aged between 15 and 29 years of age, according to World Health Organization (WHO), 2019. Suicidal behaviour is a complex, multi-factorial, polygenic and independent mental health problem caused by a combination of alterations and dysfunctions of several biological pathways and disruption of normal mechanisms in brain regions that remain poorly understood and need further investigation to be deciphered. Suicide complexity and unpredictability gained international interest as a field of research. Several studies have been conducted at the neuropathological, inflammatory, genetic, and molecular levels to uncover the triggers behind suicidal behaviour and develop convenient and effective therapeutic or at least preventive procedures. This review aims to summarise and focus on current knowledge of diverse biological pathways involved in the neurobiology of suicidal behaviour, and briefly highlights future potential therapeutic pathways to prevent or even treat this significant public health problem.

15.
Cytokine ; 60(3): 749-54, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22981168

RESUMEN

Recent findings have shown that the physiological functions of the hormone aldosterone go far beyond its well-known role in blood-pressure regulation and salt/water homeostasis. Aldosterone is for example involved in the regulation of inflammation, and also binds directly to mineralocorticoid receptors in specific brain regions. Interestingly, depressive symptoms appear to correlate with alterations of the aldosterone system but the underlying mechanisms have not been elucidated. In this study aldosterone (2 µg/100g body weight/day) was continuously administered via osmotic minipumps for 5 days. Lipopolysaccharide (LPS) was administered once a day for 5 days in a dose of 1mg/kg ip. The rats were tested for depressive-like behavior 24h after the last LPS injection. Protein levels of cytokines were measured in serum and cerebrospinal fluid (CSF). mRNA expression of interleukin (IL)-1ß and IL-6 in the prefrontal cortex (PFC) was analyzed using reverse transcriptase qPCR. We found that aldosterone treatment increased LPS-induced IL-1ß mRNA expression in the PFC and CSF. Moreover, there was a positive correlation between IL-1ß in CSF and depressive-like behaviors. These findings suggest that IL-1ß is affected by the renin-aldosterone-angiotensin system (RAAS) activity and connected to symptoms of depression.


Asunto(s)
Aldosterona/fisiología , Trastorno Depresivo/metabolismo , Inflamación , Interleucina-1beta/sangre , Interleucina-1beta/líquido cefalorraquídeo , Aldosterona/administración & dosificación , Animales , Conducta Animal , Citocinas/sangre , Citocinas/líquido cefalorraquídeo , Depresión/metabolismo , Interleucina-1beta/genética , Interleucina-6/genética , Lipopolisacáridos/inmunología , Masculino , Corteza Prefrontal/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Sistema Renina-Angiotensina
16.
Trends Endocrinol Metab ; 33(2): 147-157, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34949514

RESUMEN

Two hallmarks of Parkinson's disease (PD) are the widespread deposition of misfolded alpha-synuclein (αSyn) protein in the nervous system and loss of substantia nigra dopamine neurons. Recent research has suggested that αSyn aggregates in the enteric nervous system (ENS) lead to prodromal gastrointestinal (GI) symptoms such as constipation in PD, then propagating to the brain stem and eventually triggering neurodegeneration and motor symptoms. Additionally, whether the microbiome changes in PD contribute to the primary pathogenesis or, alternatively, are consequential to either the disease process or medication is still unclear. In this review, we discuss the possible roles of αSyn and microbiome changes in the GI system in PD and consider if and how the changes interact and contribute to the disease process and symptoms.


Asunto(s)
Sistema Nervioso Entérico , Microbiota , Enfermedad de Parkinson , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/patología , Tracto Gastrointestinal/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
17.
Biol Psychiatry Glob Open Sci ; 2(1): 45-53, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35252950

RESUMEN

BACKGROUND: Depressive disorders are linked to dysfunction in reward-related behaviors and corticostriatal reward circuitry. Low-grade dysregulation of the immune system, e.g., elevations in plasma interleukin 6 (IL-6) and tumor necrosis factor α, have been thought to affect corticostriatal reward circuitry. Little is presently known about the degree to which these relationships generalize to patients with treatment-resistant depression (TRD) and/or childhood trauma history. METHODS: Resting-state functional connectivity between the ventral striatum (VS) and ventromedial prefrontal cortex (vmPFC) regions and plasma inflammatory marker levels (IL-6, tumor necrosis factor α) were measured in 74 adults with TRD. Regression analyses examined associations of inflammatory markers with VS-vmPFC connectivity and the moderating effects of self-reported childhood trauma on these associations, with exploratory analyses examining trauma subtypes. RESULTS: IL-6 was negatively associated with VS-vmPFC connectivity (specifically for the left VS). Childhood trauma moderated the relationships between tumor necrosis factor α and VS-vmPFC connectivity (specifically for the right VS) such that greater childhood trauma severity (particularly emotional neglect) was associated with stronger cytokine-connectivity associations. CONCLUSIONS: This study independently extends previously reported associations between IL-6 and reductions in corticostriatal connectivity to a high-priority clinical population of treatment-seeking patients with TRD and further suggests that childhood trauma moderates specific associations between cytokines and corticostriatal connectivity. These findings suggest that associations between elevated plasma cytokine levels and reduced corticostriatal connectivity are a potential pathophysiological mechanism generalizable to patients with TRD and that such associations may be affected by trauma severity.

18.
Transl Psychiatry ; 12(1): 35, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35078975

RESUMEN

Depression during and after pregnancy affects up to 20% of pregnant women, but the biological underpinnings remain incompletely understood. As pregnancy progresses, the immune system changes to facilitate fetal development, leading to distinct fluctuations in the production of pro-inflammatory factors and neuroactive tryptophan metabolites throughout the peripartum period. Therefore, it is possible that depression in pregnancy could constitute a specific type of inflammation-induced depression. Both inflammatory factors and kynurenine metabolites impact neuroinflammation and glutamatergic neurotransmission and can therefore affect mood and behavior. To determine whether cytokines and kynurenine metabolites can predict the development of depression in pregnancy, we analyzed blood samples and clinical symptoms in 114 women during each trimester and the postpartum. We analyzed plasma IL-1ß, IL-2, -6, -8, -10, TNF, kynurenine, tryptophan, serotonin, kynurenic- quinolinic- and picolinic acids and used mixed-effects models to assess the association between biomarkers and depression severity. IL-1ß and IL-6 levels associated positively with severity of depressive symptoms across pregnancy and the postpartum, and that the odds of experiencing significant depressive symptoms increased by >30% per median absolute deviation for both IL-1ß and IL-6 (both P = 0.01). A combination of cytokines and kynurenine metabolites in the 2nd trimester had a >99% probability of accurately predicting 3rd trimester depression, with an ROC AUC > 0.8. Altogether, our work shows that cytokines and tryptophan metabolites can predict depression during pregnancy and could be useful as clinical markers of risk. Moreover, inflammation and kynurenine pathway enzymes should be considered possible therapeutic targets in peripartum depression.


Asunto(s)
Depresión , Triptófano , Citocinas , Femenino , Humanos , Quinurenina , Enfermedades Neuroinflamatorias , Embarazo
19.
Front Cell Neurosci ; 16: 944875, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187297

RESUMEN

There is growing evidence for the key role of microglial functional state in brain pathophysiology. Consequently, there is a need for efficient automated methods to measure the morphological changes distinctive of microglia functional states in research settings. Currently, many commonly used automated methods can be subject to sample representation bias, time consuming imaging, specific hardware requirements and difficulty in maintaining an accurate comparison across research environments. To overcome these issues, we use commercially available deep learning tools Aiforia® Cloud (Aifoira Inc., Cambridge, MA, United States) to quantify microglial morphology and cell counts from histopathological slides of Iba1 stained tissue sections. We provide evidence for the effective application of this method across a range of independently collected datasets in mouse models of viral infection and Parkinson's disease. Additionally, we provide a comprehensive workflow with training details and annotation strategies by feature layer that can be used as a guide to generate new models. In addition, all models described in this work are available within the Aiforia® platform for study-specific adaptation and validation.

20.
Brain Behav Immun ; 25(2): 335-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20951793

RESUMEN

Elevated plasma cytokines is a common finding in Major Depressive Disorder (MDD), although not consistent. It is currently not known whether the inflammatory changes are confined to any specific subgroup of depressive patients. We here analyzed three inflammatory markers in suicidal and non-suicidal depressed patients, as well as healthy controls. Plasma interleukin (IL)-2, IL-6 and tumor necrosis factor (TNF)-α were measured in 47 suicide attempters, 17 non-suicidal depressed patients and 16 healthy controls. Study participants were evaluated using the Comprehensive Psychopathological Rating Scale (CPRS) with subscales for anxiety and degree of depression, as well as the Suicide Assessment Scale (SUAS). We found increased levels of IL-6 and TNF-α as well as decreased IL-2 concentrations in suicide attempters compared to non-suicidal depressed patients and healthy controls. The results were adjusted for potential confounders of cytokine expression, such as age, sex, body mass index (BMI), degree of depression, anxiety, personality disturbance, abuse and type of medication. These results demonstrate for the first time that suicidal patients display a distinct peripheral blood cytokine profile compared to non-suicidal depressed patients. Thus, our study provides further support for a role of inflammation in the pathophysiology of suicidality.


Asunto(s)
Citocinas/sangre , Trastorno Depresivo/sangre , Trastorno Depresivo/psicología , Intento de Suicidio/psicología , Adulto , Antidepresivos/uso terapéutico , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo Mayor/sangre , Trastorno Depresivo Mayor/psicología , Manual Diagnóstico y Estadístico de los Trastornos Mentales , Femenino , Humanos , Inflamación/sangre , Inflamación/psicología , Interleucina-2/sangre , Interleucina-6/sangre , Masculino , Escalas de Valoración Psiquiátrica , Análisis de Regresión , Ideación Suicida , Factor de Necrosis Tumoral alfa/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA