Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 516(7530): 207-12, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25383531

RESUMEN

The TMEM16 family of proteins, also known as anoctamins, features a remarkable functional diversity. This family contains the long sought-after Ca(2+)-activated chloride channels as well as lipid scramblases and cation channels. Here we present the crystal structure of a TMEM16 family member from the fungus Nectria haematococca that operates as a Ca(2+)-activated lipid scramblase. Each subunit of the homodimeric protein contains ten transmembrane helices and a hydrophilic membrane-traversing cavity that is exposed to the lipid bilayer as a potential site of catalysis. This cavity harbours a conserved Ca(2+)-binding site located within the hydrophobic core of the membrane. Mutations of residues involved in Ca(2+) coordination affect both lipid scrambling in N. haematococca TMEM16 and ion conduction in the Cl(-) channel TMEM16A. The structure reveals the general architecture of the family and its mode of Ca(2+) activation. It also provides insight into potential scrambling mechanisms and serves as a framework to unravel the conduction of ions in certain TMEM16 proteins.


Asunto(s)
Calcio/metabolismo , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Nectria/química , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/metabolismo , Secuencia de Aminoácidos , Animales , Anoctamina-1 , Sitios de Unión/genética , Calcio/química , Calcio/farmacología , Canales de Cloruro/genética , Cristalografía por Rayos X , Conductividad Eléctrica , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Transporte Iónico/efectos de los fármacos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Nectria/enzimología , Nectria/genética , Proteínas de Neoplasias/química , Proteínas de Transferencia de Fosfolípidos/genética , Multimerización de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
2.
Nat Commun ; 13(1): 1826, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383177

RESUMEN

Lipopolysaccharides are major constituents of the extracellular leaflet in the bacterial outer membrane and form an effective physical barrier for environmental threats and for antibiotics in Gram-negative bacteria. The last step of LPS insertion via the Lpt pathway is mediated by the LptD/E protein complex. Detailed insights into the architecture of LptDE transporter complexes have been derived from X-ray crystallography. However, no structure of a laterally open LptD transporter, a transient state that occurs during LPS release, is available to date. Here, we report a cryo-EM structure of a partially opened LptDE transporter in complex with rigid chaperones derived from nanobodies, at 3.4 Å resolution. In addition, a subset of particles allows to model a structure of a laterally fully opened LptDE complex. Our work offers insights into the mechanism of LPS insertion, provides a structural framework for the development of antibiotics targeting LptD and describes a highly rigid chaperone scaffold to enable structural biology of challenging protein targets.


Asunto(s)
Proteínas de Escherichia coli , Lipopolisacáridos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas de Escherichia coli/metabolismo , Bacterias Gramnegativas/metabolismo , Lipopolisacáridos/metabolismo
3.
Methods Mol Biol ; 2127: 167-184, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32112322

RESUMEN

Nanobodies, small recombinant binders derived from camelid single chain antibodies, have become widely used tools in a diversity of disciplines related to membrane proteins. They are applied as chaperones in crystallization and blockers or modifiers of protein activity among numerous other applications. Their simple architecture as a single polypeptide chain, in contrast to classical antibodies, enables straightforward cloning, library generation, and recombinant expression. The small diameter and the pointed wedge-like shape of the antigen-binding site underlies binding to hollows and crevices of membrane proteins and renders nanobodies often conformation specific making them a preferred type of chaperone. Here we describe a simple protocol for the recombinant production of nanobodies in E. coli and their purification. We expand the current repertoire of usage further by describing a procedure for enlarging nanobodies on their C-terminal end to generate "macrobodies," without interfering with their original characteristics. These enlarged nanobodies extend the application as a chaperone in crystallography and can serve to increase the mass for small targets in single particle electron cryo-microscopy, a field where nanobodies had so far only limited effect because of their small size.


Asunto(s)
Bioquímica/métodos , Proteínas de la Membrana/inmunología , Anticuerpos de Dominio Único/biosíntesis , Anticuerpos de Dominio Único/aislamiento & purificación , Anticuerpos de Dominio Único/fisiología , Animales , Cromatografía en Gel , Clonación Molecular/métodos , Escherichia coli , Células Eucariotas , Regulación Bacteriana de la Expresión Génica , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Unión Proteica , Conformación Proteica , Transformación Bacteriana
4.
Elife ; 92020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32267231

RESUMEN

The TMEM175 family constitutes recently discovered K+channels that are important for autophagosome turnover and lysosomal pH regulation and are associated with the early onset of Parkinson Disease. TMEM175 channels lack a P-loop selectivity filter, a hallmark of all known K+ channels, raising the question how selectivity is achieved. Here, we report the X-ray structure of a closed bacterial TMEM175 channel in complex with a nanobody fusion-protein disclosing bound K+ ions. Our analysis revealed that a highly conserved layer of threonine residues in the pore conveys a basal K+ selectivity. An additional layer comprising two serines in human TMEM175 increases selectivity further and renders this channel sensitive to 4-aminopyridine and Zn2+. Our findings suggest that large hydrophobic side chains occlude the pore, forming a physical gate, and that channel opening by iris-like motions simultaneously relocates the gate and exposes the otherwise concealed selectivity filter to the pore lumen.


Asunto(s)
Canales de Potasio/química , Canales de Potasio/metabolismo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Activación del Canal Iónico , Modelos Moleculares , Potasio/química , Potasio/metabolismo , Conformación Proteica , Serina/química , Serina/metabolismo , Treonina/química , Treonina/metabolismo
5.
Methods Mol Biol ; 1949: 181-199, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30790257

RESUMEN

The distribution of different lipid species between the two leaflets is tightly regulated and underlies the concerted action of distinct catalytic entities. While flippases and floppases establish membrane asymmetry, scramblases randomize the lipid distribution and play pivotal roles during blood clotting, apoptosis, and in processes such as N-linked glycosylation of proteins. The recent discovery of TMEM16 family members acting as scramblases has led to an increasing demand for developing protocols tailored for TMEM16 proteins to enable functional investigations of their scrambling activity. Here we describe a protocol for the expression, purification, and functional reconstitution of TMEM16 proteins into preformed liposomes and measurement of their scrambling activity using fluorescence-labeled lipid derivatives. The reconstitution involves extrusion of liposomes through a membrane, destabilization of liposomes using Triton X-100, and stepwise detergent removal by adsorption on styryl-beads. The scrambling assay is based on the selective bleaching of nitrobenzoxadiazol fluorescent lipids on the outer leaflet of liposomes by the membrane-impermeant reducing agent sodium dithionite. The assay allows conclusions on the substrate specificity and on the kinetics of the transported lipids as shown with the example of a Ca2+-activated TMEM16 scramblase from the fungus Nectria haematococca (nhTMEM16).


Asunto(s)
Anoctaminas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteolípidos/metabolismo , Anoctaminas/aislamiento & purificación , Proteínas de Transferencia de Fosfolípidos/aislamiento & purificación , Proteolípidos/química
6.
Sci Rep ; 9(1): 4960, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30874566

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

7.
Elife ; 62017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28561733

RESUMEN

The calcium-activated chloride channel TMEM16A is a member of a conserved protein family that comprises ion channels and lipid scramblases. Although the structure of the scramblase nhTMEM16 has defined the architecture of the family, it was unknown how a channel has adapted to cope with its distinct functional properties. Here we have addressed this question by the structure determination of mouse TMEM16A by cryo-electron microscopy and a complementary functional characterization. The protein shows a similar organization to nhTMEM16, except for changes at the site of catalysis. There, the conformation of transmembrane helices constituting a membrane-spanning furrow that provides a path for lipids in scramblases has changed to form an enclosed aqueous pore that is largely shielded from the membrane. Our study thus reveals the structural basis of anion conduction in a TMEM16 channel and it defines the foundation for the diverse functional behavior in the TMEM16 family.


Asunto(s)
Aniones/metabolismo , Anoctamina-1/metabolismo , Anoctamina-1/ultraestructura , Animales , Microscopía por Crioelectrón , Ratones , Conformación Proteica
8.
Sci Rep ; 7(1): 4947, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28694434

RESUMEN

The transgenic mouse model R6/2 exhibits Huntington's disease (HD)-like deficits and basic pathophysiological similarities. We also used the pheochromocytoma-12 (PC12)-cell-line-model to investigate the effect of laquinimod on metabolic activity. Laquinimod is an orally administered immunomodulatory substance currently under development for the treatment of multiple sclerosis (MS) and HD. As an essential effect, increased levels of BDNF were observed. Therefore, we investigated the therapeutic efficacy of laquinimod in the R6/2 model, focusing on its neuroprotective capacity. Weight course and survival were not influenced by laquinimod. Neither were any metabolic effects seen in an inducible PC12-cell-line model of HD. As a positive effect, motor functions of R6/2 mice at the age of 12 weeks significantly improved. Preservation of morphologically intact neurons was found after treatment in the striatum, as revealed by NeuN, DARPP-32, and ubiquitin. Biochemical analysis showed a significant increase in the brain-derived neurotrophic factor (BDNF) level in striatal but not in cortical neurons. The number of mutant huntingtin (mhtt) and inducible nitric oxide synthase (iNOS) positive cells was reduced in both the striatum and motor cortex following treatment. These findings suggest that laquinimod could provide a mild effect on motor function and striatal histopathology, but not on survival. Besides influences on the immune system, influence on BDNF-dependent pathways in HD are discussed.


Asunto(s)
Quinolonas/farmacología , Animales , Biomarcadores , Peso Corporal , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Expresión Génica , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/etiología , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/fisiopatología , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células PC12 , Ratas , Tasa de Supervivencia
9.
Curr Opin Struct Biol ; 39: 61-70, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27295354

RESUMEN

Upon activation, lipid scramblases dissipate the lipid asymmetry of membranes, in an ATP-independent manner, by catalyzing flip-flop of lipids between the leaflets. The molecular identities of these proteins long remained obscure, but in recent years the TMEM16 family of proteins has been found to constitute Ca2+-activated scramblases. Recently, the X-ray structure of a fungal TMEM16 homologue has provided insight into the architecture of this protein family and into potential scrambling mechanisms. The protein forms homodimers with each subunit containing a membrane-spanning hydrophilic cleft. This region is of sufficient size to harbor polar headgroups on their way across the membrane and thus may lower the energetic barrier for the diffusion of lipids between the two leaflets of the bilayer. A regulatory Ca2+ binding site located within the membrane adjacent to this hydrophobic cleft is responsible for activation by yet unknown mechanisms.


Asunto(s)
Anoctaminas/química , Anoctaminas/metabolismo , Fosfolípidos/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Fosfolípidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA