Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Proteome Res ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013105

RESUMEN

Intact-mass spectrometry has huge potential for clinical application, as it enables both quantitative and qualitative analysis of intact proteins and possibly unlocks additional pathophysiological information via, e.g., detection of specific post-translational modifications (PTMs). Such valuable and clinically useful selectivity is typically lost during conventional bottom-up mass spectrometry. We demonstrate an innovative immunoprecipitation protein enrichment assay coupled to ultrahigh performance liquid chromatography quadrupole time-of-flight high resolution mass spectrometry (UPLC-QToF-HRMS) for the fast and simple identification of the protein tumor marker Neuron Specific Enolase Gamma (NSEγ) at low endogenous concentrations in human serum. Additionally, using the combination of immunoaffinity purification with intact mass spectrometry, the presence of NSEγ in an acetylated form in human serum was detected. This highlights the unique potential of immunoaffinity intact mass spectrometry in clinical diagnostics.

2.
J Biol Chem ; 299(7): 104855, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224961

RESUMEN

Therapeutic strategies targeting nuclear receptors (NRs) beyond their endogenous ligand binding pocket have gained significant scientific interest driven by a need to circumvent problems associated with drug resistance and pharmacological profile. The hub protein 14-3-3 is an endogenous regulator of various NRs, providing a novel entry point for small molecule modulation of NR activity. Exemplified, 14-3-3 binding to the C-terminal F-domain of the estrogen receptor alpha (ERα), and small molecule stabilization of the ERα/14-3-3ζ protein complex by the natural product Fusicoccin A (FC-A), was demonstrated to downregulate ERα-mediated breast cancer proliferation. This presents a novel drug discovery approach to target ERα; however, structural and mechanistic insights into ERα/14-3-3 complex formation are lacking. Here, we provide an in-depth molecular understanding of the ERα/14-3-3ζ complex by isolating 14-3-3ζ in complex with an ERα protein construct comprising its ligand-binding domain (LBD) and phosphorylated F-domain. Bacterial co-expression and co-purification of the ERα/14-3-3ζ complex, followed by extensive biophysical and structural characterization, revealed a tetrameric complex between the ERα homodimer and the 14-3-3ζ homodimer. 14-3-3ζ binding to ERα, and ERα/14-3-3ζ complex stabilization by FC-A, appeared to be orthogonal to ERα endogenous agonist (E2) binding, E2-induced conformational changes, and cofactor recruitment. Similarly, the ERα antagonist 4-hydroxytamoxifen inhibited cofactor recruitment to the ERα LBD while ERα was bound to 14-3-3ζ. Furthermore, stabilization of the ERα/14-3-3ζ protein complex by FC-A was not influenced by the disease-associated and 4-hydroxytamoxifen resistant ERα-Y537S mutant. Together, these molecular and mechanistic insights provide direction for targeting ERα via the ERα/14-3-3 complex as an alternative drug discovery approach.


Asunto(s)
Proteínas 14-3-3 , Receptor alfa de Estrógeno , Humanos , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Ligandos , Tamoxifeno/farmacología , Unión Proteica/efectos de los fármacos , Descubrimiento de Drogas , Antagonistas de Estrógenos/farmacología
3.
Chembiochem ; 25(14): e202400214, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38738787

RESUMEN

Protein-protein interactions (PPIs) are of utmost importance for maintenance of cellular homeostasis. Herein, a central role can be found for 14-3-3 proteins. These hub-proteins are known to bind hundreds of interaction partners, thereby regulating their activity, localization, and/or stabilization. Due to their ability to bind a large variety of client proteins, studies of 14-3-3 protein complexes flourished over the last decades, aiming to gain greater molecular understanding of these complexes and their role in health and disease. Because of their crucial role within the cell, 14-3-3 protein complexes are recognized as highly interesting therapeutic targets, encouraging the discovery of small molecule modulators of these PPIs. We discuss various examples of 14-3-3-mediated regulation of its binding partners on a mechanistic level, highlighting the versatile and multi-functional role of 14-3-3 within the cell. Furthermore, an overview is given on the development of stabilizers of 14-3-3 protein complexes, from initially used natural products to fragment-based approaches. These studies show the potential of 14-3-3 PPI stabilizers as novel agents in drug discovery and as tool compounds to gain greater molecular understanding of the role of 14-3-3-based protein regulation.


Asunto(s)
Proteínas 14-3-3 , Unión Proteica , Bibliotecas de Moléculas Pequeñas , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Humanos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/metabolismo
4.
Chembiochem ; 25(1): e202300636, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37902676

RESUMEN

Protein-protein interaction (PPI) modulation is a promising approach in drug discovery with the potential to expand the 'druggable' proteome and develop new therapeutic strategies. While there have been significant advancements in methodologies for developing PPI inhibitors, there is a relative scarcity of literature describing the 'bottom-up' development of PPI stabilizers (Molecular Glues). The hub protein 14-3-3 and its interactome provide an excellent platform for exploring conceptual approaches to PPI modulation, including evolution of chemical matter for Molecular Glues. In this study, we employed a fragment extension strategy to discover stabilizers for the complex of 14-3-3 protein and an Estrogen Receptor alpha-derived peptide (ERα). A focused library of analogues derived from an amidine-substituted thiophene fragment enhanced the affinity of the 14-3-3/ERα complex up to 6.2-fold. Structure-activity relationship (SAR) analysis underscored the importance of the newly added, aromatic side chain with a certain degree of rigidity. X-ray structural analysis revealed a unique intermolecular π-π stacking binding mode of the most active analogues, resulting in the simultaneous binding of two molecules to the PPI binding pocket. Notably, analogue 11 displayed selective stabilization of the 14-3-3/ERα complex.


Asunto(s)
Proteínas 14-3-3 , Receptor alfa de Estrógeno , Proteínas 14-3-3/química , Unión Proteica , Descubrimiento de Drogas/métodos , Relación Estructura-Actividad
5.
Clin Chem Lab Med ; 62(4): 720-728, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37886827

RESUMEN

OBJECTIVES: Numerous studies have proven the potential of cytokeratin 19 fragment 21-1 (CYFRA 21-1) detection in the (early) diagnosis and treatment monitoring of non-small cell lung cancer (NSCLC). Conventional immunoassays for CYFRA 21-1 quantification are however prone to interferences and lack diagnostic sensitivity and standardization. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is an emerging approach based on a different, often superior, detection principle, which may improve the clinical applicability of CYFRA 21-1 in cancer diagnostics. Therefore, we developed and validated a protein precipitation, immunoaffinity (IA) LC-MS/MS assay for quantitative analysis of serum CYFRA 21-1. METHODS: Selective sample preparation was performed using ammonium sulfate (AS) precipitation, IA purification, tryptic digestion and LC-MS/MS quantification using a signature peptide and isotopically labeled internal standard. The workflow was optimized and validated according to EMA guidelines and results were compared to a conventional immunoassay. RESULTS: Significant interference effects were seen during IA purification, which were sufficiently solved by performing AS precipitation prior to IA purification. A linear calibration curve was obtained in the range of 1.0-100 ng/mL (R2=0.98). Accuracy and precision were well within acceptance criteria. In sera of patients suspected of lung cancer, the method showed good correlation with the immunoassay. CONCLUSIONS: A robust AS precipitation-IA LC-MS/MS assay for the quantification of serum CYFRA 21-1 was developed. With this assay, the clinically added value of LC-MS/MS-based detection over immunoassays can be further explored.


Asunto(s)
Antígenos de Neoplasias , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Cromatografía Liquida/métodos , Queratina-19 , Espectrometría de Masas en Tándem/métodos , Neoplasias Pulmonares/diagnóstico , Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Cromatografía Líquida con Espectrometría de Masas
6.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33536342

RESUMEN

Cooperative ligand binding is an important phenomenon in biological systems where ligand binding influences the binding of another ligand at an alternative site of the protein via an intramolecular network of interactions. The underlying mechanisms behind cooperative binding remain poorly understood, primarily due to the lack of structural data of these ternary complexes. Using time-resolved fluorescence resonance energy transfer (TR-FRET) studies, we show that cooperative ligand binding occurs for RORγt, a nuclear receptor associated with the pathogenesis of autoimmune diseases. To provide the crucial structural insights, we solved 12 crystal structures of RORγt simultaneously bound to various orthosteric and allosteric ligands. The presence of the orthosteric ligand induces a clamping motion of the allosteric pocket via helices 4 to 5. Additional molecular dynamics simulations revealed the unusual mechanism behind this clamping motion, with Ala355 shifting between helix 4 and 5. The orthosteric RORγt agonists regulate the conformation of Ala355, thereby stabilizing the conformation of the allosteric pocket and cooperatively enhancing the affinity of the allosteric inverse agonists.


Asunto(s)
Regulación Alostérica/genética , Descubrimiento de Drogas , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Conformación Proteica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Sitio Alostérico/genética , Sitios de Unión/genética , Fenómenos Biofísicos , Cristalografía por Rayos X , Humanos , Ligandos , Conformación Molecular , Simulación de Dinámica Molecular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/química , Unión Proteica/genética
7.
J Am Chem Soc ; 145(12): 6741-6752, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36926879

RESUMEN

Molecules that stabilize protein-protein interactions (PPIs) are invaluable as tool compounds for biophysics and (structural) biology, and as starting points for molecular glue drug discovery. However, identifying initial starting points for PPI stabilizing matter is highly challenging, and chemical optimization is labor-intensive. Inspired by chemical crosslinking and reversible covalent fragment-based drug discovery, we developed an approach that we term "molecular locks" to rapidly access molecular glue-like tool compounds. These dual-covalent small molecules reversibly react with a nucleophilic amino acid on each of the partner proteins to dynamically crosslink the protein complex. The PPI between the hub protein 14-3-3 and estrogen-related receptor γ (ERRγ) was used as a pharmacologically relevant case study. Based on a focused library of dual-reactive small molecules, a molecular glue tool compound was rapidly developed. Biochemical assays and X-ray crystallographic studies validated the ternary covalent complex formation and overall PPI stabilization via dynamic covalent crosslinking. The molecular lock approach is highly selective for the specific 14-3-3/ERRγ complex, over other 14-3-3 complexes. This selectivity is driven by the interplay of molecular reactivity and molecular recognition of the composite PPI binding interface. The long lifetime of the dual-covalent locks enabled the selective stabilization of the 14-3-3/ERRγ complex even in the presence of several other competing 14-3-3 clients with higher intrinsic binding affinities. The molecular lock approach enables systematic, selective, and potent stabilization of protein complexes to support molecular glue drug discovery.


Asunto(s)
Descubrimiento de Drogas , Receptores de Estrógenos , Humanos , Unión Proteica , Proteínas 14-3-3/química , Aminoácidos/metabolismo
8.
J Am Chem Soc ; 145(37): 20328-20343, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37676236

RESUMEN

The stabilization of protein-protein interactions (PPIs) has emerged as a promising strategy in chemical biology and drug discovery. The identification of suitable starting points for stabilizing native PPIs and their subsequent elaboration into selective and potent molecular glues lacks structure-guided optimization strategies. We have previously identified a disulfide fragment that stabilized the hub protein 14-3-3σ bound to several of its clients, including ERα and C-RAF. Here, we show the structure-based optimization of the nonselective fragment toward selective and highly potent small-molecule stabilizers of the 14-3-3σ/ERα complex. The more elaborated molecular glues, for example, show no stabilization of 14-3-3σ/C-RAF up to 150 µM compound. Orthogonal biophysical assays, including mass spectrometry and fluorescence anisotropy, were used to establish structure-activity relationships. The binding modes of 37 compounds were elucidated with X-ray crystallography, which further assisted the concomitant structure-guided optimization. By targeting specific amino acids in the 14-3-3σ/ERα interface and locking the conformation with a spirocycle, the optimized covalent stabilizer 181 achieved potency, cooperativity, and selectivity similar to the natural product Fusicoccin-A. This case study showcases the value of addressing the structure, kinetics, and cooperativity for molecular glue development.


Asunto(s)
Productos Biológicos , Receptor alfa de Estrógeno , Humanos , Receptores de Estrógenos , Aminoácidos , Bioensayo
9.
Angew Chem Int Ed Engl ; 62(37): e202308004, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37455289

RESUMEN

Small-molecule stabilization of protein-protein interactions (PPIs) is a promising strategy in chemical biology and drug discovery. However, the systematic discovery of PPI stabilizers remains a largely unmet challenge. Herein we report a fragment-linking approach targeting the interface of 14-3-3 and a peptide derived from the estrogen receptor alpha (ERα) protein. Two classes of fragments-a covalent and a noncovalent fragment-were co-crystallized and subsequently linked, resulting in a noncovalent hybrid molecule in which the original fragment interactions were largely conserved. Supported by 20 crystal structures, this initial hybrid molecule was further optimized, resulting in selective, 25-fold stabilization of the 14-3-3/ERα interaction. The high-resolution structures of both the single fragments, their co-crystal structures and those of the linked fragments document a feasible strategy to develop orthosteric PPI stabilizers by linking to an initial tethered fragment.


Asunto(s)
Proteínas 14-3-3 , Receptor alfa de Estrógeno , Proteínas 14-3-3/química , Receptor alfa de Estrógeno/metabolismo , Unión Proteica , Descubrimiento de Drogas/métodos
10.
J Biol Chem ; 296: 100551, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33744286

RESUMEN

The glucocorticoid receptor (GR) is a ligand-dependent transcription factor that plays a central role in inflammation. The GR activity is also modulated via protein-protein interactions, including binding of 14-3-3 proteins induced by GR phosphorylation. However, the specific phosphorylation sites on the GR that trigger these interactions and their functional consequences are less clear. Hence, we sought to examine this system in more detail. We used phosphorylated GR peptides, biophysical studies, and X-ray crystallography to identify key residues within the ligand-binding domain of the GR, T524 and S617, whose phosphorylation results in binding of the representative 14-3-3 protein 14-3-3ζ. A kinase screen identified misshapen-like kinase 1 (MINK1) as responsible for phosphorylating T524 and Rho-associated protein kinase 1 for phosphorylating S617; cell-based approaches confirmed the importance of both GR phosphosites and MINK1 but not Rho-associated protein kinase 1 alone in inducing GR-14-3-3 binding. Together our results provide molecular-level insight into 14-3-3-mediated regulation of the GR and highlight both MINK1 and the GR-14-3-3 axis as potential targets for future therapeutic intervention.


Asunto(s)
Proteínas 14-3-3/metabolismo , Regulación de la Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Glucocorticoides/metabolismo , Treonina/metabolismo , Proteínas 14-3-3/genética , Células HEK293 , Humanos , Mutación , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Receptores de Glucocorticoides/genética , Treonina/genética , Activación Transcripcional
11.
Bioorg Med Chem ; 68: 116877, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35714534

RESUMEN

The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) plays a central role in metabolic processes. PPARγ full agonists have side effects, arguing for the discovery of PPARγ partial agonists with novel chemotypes. We report the unique binding mode of the known allosteric retinoic acid receptor-related orphan receptor gamma t (RORγt) ligand MRL-871 to PPARγ. MRL-871 binds between PPARγ helices 3, 5, 7 and 11, where it stabilizes the beta-sheet region with a hydrogen bond between its carboxylic acid moiety and PPARγ Ser370. Its unique binding mode differs from that of the benzoyl 2-methyl indoles which are well-studied, structurally similar, PPARγ ligands. MRL-871's high affinity for PPARγ induces only limited coactivator stabilization, highlighting its attractive partial agonistic characteristics. Affinity comparison of MRL-871 and related compounds towards both RORγt and PPARγ indicates the possibility for tuning of selectivity, bringing MRL-871 forward as an interesting starting point for novel PPARγ ligands.


Asunto(s)
Indazoles , PPAR gamma , Indazoles/farmacología , Ligandos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , PPAR gamma/agonistas , Estructura Secundaria de Proteína
12.
Biochem J ; 478(14): 2793-2809, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34232285

RESUMEN

Growth factor receptor-bound protein 2 (GRB2) is a trivalent adaptor protein and a key element in signal transduction. It interacts via its flanking nSH3 and cSH3 domains with the proline-rich domain (PRD) of the RAS activator SOS1 and via its central SH2 domain with phosphorylated tyrosine residues of receptor tyrosine kinases (RTKs; e.g. HER2). The elucidation of structural organization and mechanistic insights into GRB2 interactions, however, remain challenging due to their inherent flexibility. This study represents an important advance in our mechanistic understanding of how GRB2 links RTKs to SOS1. Accordingly, it can be proposed that (1) HER2 pYP-bound SH2 potentiates GRB2 SH3 domain interactions with SOS1 (an allosteric mechanism); (2) the SH2 domain blocks cSH3, enabling nSH3 to bind SOS1 first before cSH3 follows (an avidity-based mechanism); and (3) the allosteric behavior of cSH3 to other domains appears to be unidirectional, although there is an allosteric effect between the SH2 and SH3 domains.


Asunto(s)
Proteína Adaptadora GRB2/química , Fosfotirosina/química , Dominios Proteicos , Proteína SOS1/química , Dominios Homologos src , Secuencia de Aminoácidos , Sitios de Unión/genética , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Humanos , Cinética , Ligandos , Modelos Moleculares , Fosfotirosina/metabolismo , Unión Proteica , Proteína SOS1/genética , Proteína SOS1/metabolismo
13.
Angew Chem Int Ed Engl ; 61(42): e202209806, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36006397

RESUMEN

Here we delineate simple and tunable hydrophobically driven chiral functional assemblies of diacetylene cored pseudopeptides. These amino acid appended, rigid core dialkynes constitute promising chiral supramolecular building blocks for materials properties engineering. The chiral appended amino acid elements allow for simple tuning of solubility and interaction properties as well as governing chirality, while the central dialkyne core can impart hydrophobically driven assembly and Aggregation Induced Emission (AIE) properties. The self-assembly of these rod-like dialkynes can be regulated by tuning the solvent environment, with for example self-assembly into vesicles in acetonitrile and into helical organization with AIE in a H2 O/DMSO mixture. Of additional high interest, these supramolecular materials, themselves devoid of liquid crystal (LC) properties, can induce chirality into non-chiral LC matrices with high helical twisting power.


Asunto(s)
Aminoácidos , Dimetilsulfóxido , Acetonitrilos , Interacciones Hidrofóbicas e Hidrofílicas , Solventes , Estereoisomerismo
14.
Angew Chem Int Ed Engl ; 61(17): e202115041, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35133040

RESUMEN

The regulation of protein uptake and secretion is crucial for (inter)cellular signaling. Mimicking these molecular events is essential when engineering synthetic cellular systems. A first step towards achieving this goal is obtaining control over the uptake and release of proteins from synthetic cells in response to an external trigger. Herein, we have developed an artificial cell that sequesters and releases proteinaceous cargo upon addition of a coded chemical signal: single-stranded DNA oligos (ssDNA) were employed to independently control the localization of a set of three different ssDNA-modified proteins. The molecular coded signal allows for multiple iterations of triggered uptake and release, regulation of the amount and rate of protein release and the sequential release of the three different proteins. This signaling concept was furthermore used to directionally transfer a protein between two artificial cell populations, providing novel directions for engineering lifelike communication pathways inside higher order (proto)cellular structures.


Asunto(s)
Células Artificiales , Células Artificiales/química , ADN/química , Ingeniería , Proteínas/química
15.
J Biol Chem ; 295(27): 9183-9191, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32439807

RESUMEN

Nuclear receptors (NRs) are high-interest targets in drug discovery because of their involvement in numerous biological processes and diseases. Classically, NRs are targeted via their hydrophobic, orthosteric pocket. Although successful, this approach comes with challenges, including off-target effects due to lack of selectivity. Allosteric modulation of NR activity constitutes a promising pharmacological strategy. The retinoic acid receptor-related orphan receptor-γt (RORγt) is a constitutively active NR that positively regulates the expression of interleukin-17 in T helper 17 cells. Inhibiting this process is an emerging strategy for managing autoimmune diseases. Recently, an allosteric binding pocket in the C-terminal region of the ligand-binding domain (LBD) of RORγt was discovered that is amenable to small-molecule drug discovery. Compounds binding this pocket induce a reorientation of helix 12, thereby preventing coactivator recruitment. Therefore, inverse agonists binding this site with high affinity are actively being pursued. To elucidate the pocket formation mechanism, verify the uniqueness of this pocket, and substantiate the relevance of targeting this site, here we identified the key characteristics of the RORγt allosteric region. We evaluated the effects of substitutions in the LBD on coactivator, orthosteric, and allosteric ligand binding. We found that two molecular elements unique to RORγt, the length of helix 11' and a Gln-487 residue, are crucial for the formation of the allosteric pocket. The unique combination of elements present in RORγt suggests a high potential for subtype-selective targeting of this NR to more effectively treat patients with autoimmune diseases.


Asunto(s)
Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/ultraestructura , Sitio Alostérico , Sitios de Unión , Agonismo Inverso de Drogas , Humanos , Interleucina-17 , Ligandos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/metabolismo , Células Th17/metabolismo
16.
J Am Chem Soc ; 143(34): 13495-13500, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34427424

RESUMEN

Rational design of protein-protein interaction (PPI) inhibitors is challenging. Connecting a general supramolecular protein binder with a specific peptidic ligand provides a novel conceptual approach. Thus, lysine-specific molecular tweezers were conjugated to a peptide-based 14-3-3 ligand and produced a strong PPI inhibitor with 100-fold elevated protein affinity. X-ray crystal structure elucidation of this supramolecular directed assembly provides unique molecular insight into the binding mode and fully aligns with Molecular Dynamics (MD) simulations. This new supramolecular chemical biology concept opens the path to novel chemical tools for studying PPIs.


Asunto(s)
Proteínas 14-3-3/metabolismo , Ligandos , Proteínas 14-3-3/química , Sitios de Unión , Colorantes Fluorescentes/química , Humanos , Simulación de Dinámica Molecular , Péptidos/química , Péptidos/metabolismo , Mapas de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Termodinámica
17.
J Am Chem Soc ; 143(22): 8454-8464, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34047554

RESUMEN

The stabilization of protein complexes has emerged as a promising modality, expanding the number of entry points for novel therapeutic intervention. Targeting proteins that mediate protein-protein interactions (PPIs), such as hub proteins, is equally challenging and rewarding as they offer an intervention platform for a variety of diseases, due to their large interactome. 14-3-3 hub proteins bind phosphorylated motifs of their interaction partners in a conserved binding channel. The 14-3-3 PPI interface is consequently only diversified by its different interaction partners. Therefore, it is essential to consider, additionally to the potency, also the selectivity of stabilizer molecules. Targeting a lysine residue at the interface of the composite 14-3-3 complex, which can be targeted explicitly via aldimine-forming fragments, we studied the de novo design of PPI stabilizers under consideration of potential selectivity. By applying cooperativity analysis of ternary complex formation, we developed a reversible covalent molecular glue for the 14-3-3/Pin1 interaction. This small fragment led to a more than 250-fold stabilization of the 14-3-3/Pin1 interaction by selective interfacing with a unique tryptophan in Pin1. This study illustrates how cooperative complex formation drives selective PPI stabilization. Further, it highlights how specific interactions within a hub proteins interactome can be stabilized over other interactions with a common binding motif.


Asunto(s)
Proteínas 14-3-3/química , Iminas/química , Humanos , Modelos Moleculares , Estructura Molecular , Peptidilprolil Isomerasa de Interacción con NIMA/química , Estabilidad Proteica
18.
Angew Chem Int Ed Engl ; 60(14): 7612-7616, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33444471

RESUMEN

Biological processes rely on transient interactions that govern assembly of biomolecules into higher order, multi-component systems. A synthetic platform for the dynamic assembly of multicomponent complexes would provide novel entries to study and modulate the assembly of artificial systems into higher order topologies. Here, we establish a hybrid DNA origami-based approach as an assembly platform that enables dynamic templating of supramolecular architectures. It entails the site-selective recruitment of supramolecular polymers to the platform with preservation of the intrinsic dynamics and reversibility of the assembly process. The composition of the supramolecular assembly on the platform can be tuned dynamically, allowing for monomer rearrangement and inclusion of molecular cargo. This work should aid the study of supramolecular structures in their native environment in real-time and incites new strategies for controlled multicomponent self-assembly of synthetic building blocks.

19.
Angew Chem Int Ed Engl ; 60(20): 11262-11266, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33725379

RESUMEN

Hexameric hemoprotein (HTHP) is employed as a scaffold protein for the supramolecular assembly and activation of the apoptotic signalling enzyme caspase-9, using short DNA elements as modular recruitment domains. Caspase-9 assembly and activation on the HTHP platform due to enhanced proximity is followed by combinatorial inhibition at high scaffold concentrations. The DNA recruitment domains allow for reversible switching of the caspase-9 assembly and activity state using short modulatory DNA strands. Tuning of the recruitment domain affinity allows for generating kinetically trapped active enzyme complexes, as well as for dynamic repositioning of caspases over scaffold populations and inhibition using monovalent sink platforms. The conceptual combination of a highly structured multivalent protein platform with modular DNA recruitment domains provides emergent biomimicry properties with advanced levels of control over protein assembly.


Asunto(s)
Caspasa 9/metabolismo , ADN/metabolismo , Caspasa 9/química , ADN/química , Humanos , Cinética , Modelos Moleculares
20.
J Am Chem Soc ; 142(20): 9106-9111, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32356660

RESUMEN

The programmed construction of functional synthetic cells requires spatial control over arrays of biomolecules within the cytomimetic environment. The mimicry of the natural hierarchical assembly of biomolecules remains challenging due to the lack of an appropriate molecular toolbox. Herein, we report the implementation of DNA-decorated supramolecular assemblies as dynamic and responsive nanoscaffolds for the localization of arrays of DNA signal cargo within hierarchically assembled complex coacervate protocells. Protocells stabilized with a semipermeable membrane allow trafficking of single-stranded DNA between neighboring protocells. DNA duplex operations demonstrate the responsiveness of the nanoscaffolds to different input DNA strands via the reversible release of DNA cargo. Moreover, a second population of coacervate protocells with nanoscaffolds featuring a higher affinity for the DNA cargo enabled chemically programmed communication between both protocell populations. This combination of supramolecular structure and function paves the way for the next generation of protocells imbued with programmable, lifelike behaviors.


Asunto(s)
Células Artificiales/química , ADN/química , Nanopartículas/química , Sustancias Macromoleculares/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA