Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Cell Neurosci ; 125: 103842, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36924917

RESUMEN

Chemical platforms that facilitate both the identification and elucidation of new areas for therapeutic development are necessary but lacking. Activity-based protein profiling (ABPP) leverages active site-directed chemical probes as target discovery tools that resolve activity from expression and immediately marry the targets identified with lead compounds for drug design. However, this approach has traditionally focused on predictable and intrinsic enzyme functionality. Here, we applied our activity-based proteomics discovery platform to map non-encoded and post-translationally acquired enzyme functionalities (e.g. cofactors) in vivo using chemical probes that exploit the nucleophilic hydrazine pharmacophores found in a classic antidepressant drug (e.g. phenelzine, Nardil®). We show the probes are in vivo active and can map proteome-wide tissue-specific target engagement of the drug. In addition to engaging targets (flavoenzymes monoamine oxidase A/B) that are associated with the known therapeutic mechanism as well as several other members of the flavoenzyme family, the probes captured the previously discovered N-terminal glyoxylyl (Glox) group of Secernin-3 (SCRN3) in vivo through a divergent mechanism, indicating this functional feature has biochemical activity in the brain. SCRN3 protein is ubiquitously expressed in the brain, yet gene expression is regulated by inflammatory stimuli. In an inflammatory pain mouse model, behavioral assessment of nociception showed Scrn3 male knockout mice selectively exhibited impaired thermal nociceptive sensitivity. Our study provides a guided workflow to entangle molecular (off)targets and pharmacological mechanisms for therapeutic development.


Asunto(s)
Nocicepción , Fenelzina , Animales , Ratones , Masculino , Fenelzina/farmacología , Proteoma , Proteínas del Tejido Nervioso
2.
Nat Chem Biol ; 16(6): 667-675, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32393901

RESUMEN

N-acylethanolamines (NAEs), which include the endocannabinoid anandamide, represent an important family of signaling lipids in the brain. The lack of chemical probes that modulate NAE biosynthesis in living systems hamper the understanding of the biological role of these lipids. Using a high-throughput screen, chemical proteomics and targeted lipidomics, we report here the discovery and characterization of LEI-401 as a CNS-active N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor. LEI-401 reduced NAE levels in neuroblastoma cells and in the brain of freely moving mice, but not in NAPE-PLD KO cells and mice, respectively. LEI-401 activated the hypothalamus-pituitary-adrenal axis and impaired fear extinction, thereby emulating the effect of a cannabinoid CB1 receptor antagonist, which could be reversed by a fatty acid amide hydrolase inhibitor. Our findings highlight the distinctive role of NAPE-PLD in NAE biosynthesis in the brain and suggest the presence of an endogenous NAE tone controlling emotional behavior.


Asunto(s)
Conducta Animal/efectos de los fármacos , Inhibidores Enzimáticos/química , Metabolismo de los Lípidos/efectos de los fármacos , Fosfatidiletanolaminas/metabolismo , Fosfolipasa D/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Animales , Proteínas Sanguíneas/metabolismo , Encéfalo/metabolismo , Antagonistas de Receptores de Cannabinoides/metabolismo , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacocinética , Miedo/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Receptores de Cannabinoides/metabolismo , Transducción de Señal
3.
Adv Exp Med Biol ; 1274: 177-201, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32894511

RESUMEN

Cannabis and cannabinoid-based extracts have long been utilized for their perceived therapeutic value, and support for the legalization of cannabis for medicinal purposes continues to increase worldwide. Since the discovery of Δ9-tetrahydrocannabinol (THC) as the primary psychoactive component of cannabis over 50 years ago, substantial effort has been directed toward detection of endogenous mediators of cannabinoid activity. The discovery of anandamide and 2-arachidonoylglycerol as two endogenous lipid mediators of cannabinoid-like effects (endocannabinoids) has inspired exponential growth in our understanding of this essential pathway, as well as the pathological conditions that result from dysregulated endocannabinoid signaling. This review examines current knowledge of the endocannabinoid system including metabolic enzymes involved in biosynthesis and degradation and their receptors, and evaluates potential druggable targets for therapeutic intervention.


Asunto(s)
Endocannabinoides/metabolismo , Terapia Molecular Dirigida , Transducción de Señal/efectos de los fármacos , Cannabinoides/antagonistas & inhibidores , Cannabinoides/metabolismo , Cannabis/química , Dronabinol/antagonistas & inhibidores , Dronabinol/metabolismo , Endocannabinoides/antagonistas & inhibidores , Humanos
4.
Proc Natl Acad Sci U S A ; 113(4): 1086-91, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26755579

RESUMEN

Chronic nicotine exposure (CNE) alters synaptic transmission in the ventral tegmental area (VTA) in a manner that enhances dopaminergic signaling and promotes nicotine use. The present experiments identify a correlation between enhanced production of the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) and diminished release of the inhibitory neurotransmitter GABA in the VTA following CNE. To study the functional role of on-demand 2-AG signaling in GABAergic synapses, we used 1,2,3-triazole urea compounds to selectively inhibit 2-AG biosynthesis by diacylglycerol lipase (DAGL). The potency and selectivity of these inhibitors were established in rats in vitro (rat brain proteome), ex vivo (brain slices), and in vivo (intracerebroventricular administration) using activity-based protein profiling and targeted metabolomics analyses. Inhibition of DAGL (2-AG biosynthesis) rescues nicotine-induced VTA GABA signaling following CNE. Conversely, enhancement of 2-AG signaling in naïve rats by inhibiting 2-AG degradation recapitulates the loss of nicotine-induced GABA signaling evident following CNE. DAGL inhibition reduces nicotine self-administration without disrupting operant responding for a nondrug reinforcer or motor activity. Collectively, these findings provide a detailed characterization of selective inhibitors of rat brain DAGL and demonstrate that excessive 2-AG signaling contributes to a loss of inhibitory GABAergic constraint of VTA excitability following CNE.


Asunto(s)
Lipoproteína Lipasa/antagonistas & inhibidores , Nicotina/farmacología , Área Tegmental Ventral/efectos de los fármacos , Animales , Ácidos Araquidónicos/análisis , Ácidos Araquidónicos/antagonistas & inhibidores , Ácidos Araquidónicos/fisiología , Endocannabinoides/análisis , Endocannabinoides/antagonistas & inhibidores , Endocannabinoides/fisiología , Glicéridos/análisis , Glicéridos/antagonistas & inhibidores , Glicéridos/fisiología , Masculino , Ratas , Ratas Wistar , Autoadministración , Área Tegmental Ventral/fisiología , Ácido gamma-Aminobutírico/metabolismo
5.
J Neurosci ; 37(7): 1853-1861, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28202787

RESUMEN

Persons with alcoholism who are abstinent exhibit persistent impairments in the capacity for response inhibition, and this form of impulsivity is significantly associated with heightened relapse risk. Brain-imaging studies implicate aberrant prefrontal cortical function in this behavioral pathology, although the underlying mechanisms are not understood. Here we present evidence that deficient activation of glycine and serine release in the ventral medial prefrontal cortex (vmPFC) contributes to increased motor impulsivity during protracted abstinence from long-term alcohol exposure. Levels of 12 neurotransmitters were monitored in the rat vmPFC during the performance of a challenging variant of the five-choice serial reaction time task (5-CSRTT) in which alcohol-exposed rats exhibit excessive premature responding. Following long-term ethanol exposure, rats showed blunted task-related recruitment of vmPFC glycine and serine release, and the loss of an inverse relationship between levels of these neurotransmitters and premature responding normally evident in alcohol-naive subjects. Intra-vmPFC administration of the glycine transport inhibitor ALX5407 prevented excessive premature responding by alcohol-exposed rats, and this was reliant on NMDA glycine site availability. Alcohol-exposed rats and controls did not differ in their premature responding and glycine and serine levels in vmPFC during the performance of the standard 5-CSRTT. Collectively, these findings provide novel insight into cortical neurochemical mechanisms contributing to increased impulsivity following long-term alcohol exposure and highlight the NMDA receptor coagonist site as a potential therapeutic target for increased impulsivity that may contribute to relapse risk.SIGNIFICANCE STATEMENT Persons with alcoholism demonstrate increased motor impulsivity during abstinence; however, the neuronal mechanisms underlying these behavioral effects remain unknown. Here, we took advantage of an animal model that shows deficiencies in inhibitory control following prolonged alcohol exposure to investigate the neurotransmitters that are potentially responsible for dysregulated motor impulsivity following long-term alcohol exposure. We found that increased motor impulsivity is associated with reduced recruitment of glycine and serine neurotransmitters in the ventromedial prefrontal cortex (vmPFC) cortex in rats following long-term alcohol exposure. Administration of glycine transport inhibitor ALX5407 in the vmPFC alleviated deficits in impulse control.


Asunto(s)
Abstinencia de Alcohol , Consumo de Bebidas Alcohólicas/fisiopatología , Glicina/metabolismo , Conducta Impulsiva/fisiología , Transducción de Señal/fisiología , Animales , Depresores del Sistema Nervioso Central/efectos adversos , Conducta de Elección/efectos de los fármacos , Modelos Animales de Enfermedad , Etanol/efectos adversos , Antagonistas de Aminoácidos Excitadores/farmacología , Transportador 2 de Aminoácidos Excitadores/antagonistas & inhibidores , Masculino , Neurotransmisores/metabolismo , Estimulación Luminosa , Quinolonas/farmacología , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de los fármacos , Sarcosina/análogos & derivados , Sarcosina/farmacología , Serina/metabolismo , Serina/farmacología , Transducción de Señal/efectos de los fármacos
6.
Addict Biol ; 23(6): 1207-1222, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29949237

RESUMEN

Loren (Larry) H. Parsons passed away at the age of 51. In spite of his premature departure, Larry much contributed to the drug abuse field. Since his graduate studies for the Ph.D. in Chemistry in J.B. Justice lab, microdialysis is the tread that links Larry's research topics, namely, the role of dopamine (DA), serotonin (5-HT), gamma-aminobutyric acid (GABA), glutamate and endocannabinoids (eCBs) in drug reinforcement and dependence. Larry was the first to show that abstinence from chronic cocaine reduces extracellular DA in the NAc, consistent with the so called 'dopamine depletion hypothesis' of cocaine addiction. Another Larry's major contributions are the studies on 5-HT and 5-HT receptors' role in cocaine stimulant actions, which resulted in the identification of 5-HT1B receptors as a critical substrate of cocaine reinforcement. By applying mass spectrometry to eCBs analysis in brain dialysates, Larry's lab showed that ethanol, heroin, nicotine and cocaine differentially affect anandamide and 2-arachidonoylglicerol overflow in the NAc shell, a critical site of drugs of abuse DA stimulant actions. Larry also applied microdialysis to study GABA and glutamate's role in ethanol dependence and heroin reinforcement, providing in vivo evidence for a sensitization of corticotropin-releasing factor-dependent release of GABA in the central amygdala in withdrawal from chronic ethanol and for a reduction of GABA transmission in the ventral pallidum in heroin but not cocaine intravenous self-administration. Larry showed the wide possibilities of microdialysis as a general purpose methodology for monitoring neurotransmitters and neuromodulators in the brain extracellular compartment. From this viewpoint, he stands as the best advocate for microdialysis.

7.
Addict Biol ; 23(5): 1117-1129, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-28940879

RESUMEN

Repeated cycles of alcohol [ethanol (EtOH)] intoxication and withdrawal dysregulate excitatory glutamatergic systems in the brain and induce neuroadaptations in the medial prefrontal cortex (mPFC) that contribute to cognitive dysfunction. The mPFC is composed of subdivisions that are functionally distinct, with dorsal regions facilitating drug-cue associations and ventral regions modulating new learning in the absence of drug. A key modulator of glutamatergic activity is the holoenzyme calcium/calmodulin-dependent protein kinase II (CaMKII) that phosphorylates ionotropic glutamate receptors. Here, we examined the hypothesis that abstinence from chronic intermittent EtOH (CIE) exposure dysregulates CaMKII activity in the mPFC to impair cognitive flexibility. We used an operant model of strategy set shifting in male Long-Evans rats demonstrating reduced susceptibility to trial omissions during performance in a visual cue-guided task versus albino strains. Relative to naïve controls, rats experiencing approximately 10 days of abstinence from CIE vapor exposure demonstrated impaired performance during a procedural shift from visual cue to spatial location discrimination. Phosphorylation of CaMKII subtype α was upregulated in the dorsal, but not ventral mPFC of CIE-exposed rats, and was positively correlated with perseverative-like responding during the set shift. The findings suggest that abstinence from CIE exposure induces an undercurrent of kinase activity (e.g. CaMKII), which may promote aberrant glutamatergic responses in select regions of the mPFC. Given the role of the mPFC in modulating executive control of behavior, we propose that increased CaMKII subtype α activity reflects a dysregulated 'top-down' circuit that interferes with adaptive behavioral performance under changing environmental demands.


Asunto(s)
Alcoholismo/complicaciones , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Disfunción Cognitiva/etiología , Etanol/farmacología , Corteza Prefrontal/metabolismo , Alcoholismo/genética , Alcoholismo/fisiopatología , Animales , Conducta Animal/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Depresores del Sistema Nervioso Central/farmacología , Cognición/efectos de los fármacos , Disfunción Cognitiva/fisiopatología , Modelos Animales de Enfermedad , Masculino , Fosforilación , Ratas , Ratas Long-Evans
8.
Proc Natl Acad Sci U S A ; 110(27): E2518-27, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23776240

RESUMEN

Synaptic loss is the cardinal feature linking neuropathology to cognitive decline in Alzheimer's disease (AD). However, the mechanism of synaptic damage remains incompletely understood. Here, using FRET-based glutamate sensor imaging, we show that amyloid-ß peptide (Aß) engages α7 nicotinic acetylcholine receptors to induce release of astrocytic glutamate, which in turn activates extrasynaptic NMDA receptors (eNMDARs) on neurons. In hippocampal autapses, this eNMDAR activity is followed by reduction in evoked and miniature excitatory postsynaptic currents (mEPSCs). Decreased mEPSC frequency may reflect early synaptic injury because of concurrent eNMDAR-mediated NO production, tau phosphorylation, and caspase-3 activation, each of which is implicated in spine loss. In hippocampal slices, oligomeric Aß induces eNMDAR-mediated synaptic depression. In AD-transgenic mice compared with wild type, whole-cell recordings revealed excessive tonic eNMDAR activity accompanied by eNMDAR-sensitive loss of mEPSCs. Importantly, the improved NMDAR antagonist NitroMemantine, which selectively inhibits extrasynaptic over physiological synaptic NMDAR activity, protects synapses from Aß-induced damage both in vitro and in vivo.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Inhibición Neural/fisiología , Fragmentos de Péptidos/toxicidad , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Astrocitos/patología , Técnicas de Cocultivo , Femenino , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Ratones , Ratones Transgénicos , Ratas , Receptores Nicotínicos/metabolismo , Sinapsis/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7
9.
Proc Natl Acad Sci U S A ; 109(17): 6721-6, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22493235

RESUMEN

Peripheral inflammation initiates changes in spinal nociceptive processing leading to hyperalgesia. Previously, we demonstrated that among 102 lipid species detected by LC-MS/MS analysis in rat spinal cord, the most notable increases that occur after intraplantar carrageenan are metabolites of 12-lipoxygenases (12-LOX), particularly hepoxilins (HXA(3) and HXB(3)). Thus, we examined involvement of spinal LOX enzymes in inflammatory hyperalgesia. In the current work, we found that intrathecal (IT) delivery of the LOX inhibitor nordihydroguaiaretic acid prevented the carrageenan-evoked increase in spinal HXB(3) at doses that attenuated the associated hyperalgesia. Furthermore, IT delivery of inhibitors targeting 12-LOX (CDC, Baicalein), but not 5-LOX (Zileuton) dose-dependently attenuated tactile allodynia. Similarly, IT delivery of 12-LOX metabolites of arachidonic acid 12(S)-HpETE, 12(S)-HETE, HXA(3), or HXB(3) evoked profound, persistent tactile allodynia, but 12(S)-HpETE and HXA(3) produced relatively modest, transient heat hyperalgesia. The pronociceptive effect of HXA(3) correlated with enhanced release of Substance P from primary sensory afferents. Importantly, HXA(3) triggered sustained mobilization of calcium in cells stably overexpressing TRPV1 or TRPA1 receptors and in acutely dissociated rodent sensory neurons. Constitutive deletion or antagonists of TRPV1 (AMG9810) or TRPA1 (HC030031) attenuated this action. Furthermore, pretreatment with antihyperalgesic doses of AMG9810 or HC030031 reduced spinal HXA(3)-evoked allodynia. These data indicate that spinal HXA(3) is increased by peripheral inflammation and promotes initiation of facilitated nociceptive processing through direct activation of TRPV1 and TRPA1 at central terminals.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Araquidonato 12-Lipooxigenasa/metabolismo , Hiperalgesia/fisiopatología , Inflamación/fisiopatología , Médula Espinal/metabolismo , Canales Catiónicos TRPV/fisiología , Canales de Potencial de Receptor Transitorio/fisiología , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animales , Ratones , Médula Espinal/enzimología , Canal Catiónico TRPA1
10.
FASEB J ; 27(5): 1939-49, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23382512

RESUMEN

Previously, we observed significant increases in spinal 12-lipoxygenase (LOX) metabolites, in particular, hepoxilins, which contribute to peripheral inflammation-induced tactile allodynia. However, the enzymatic sources of hepoxilin synthase (HXS) activity in rats remain elusive. Therefore, we overexpressed each of the 6 rat 12/15-LOX enzymes in HEK-293T cells and measured by LC-MS/MS the formation of HXB3, 12-HETE, 8-HETE, and 15-HETE from arachidonic acid (AA) at baseline and in the presence of LOX inhibitors (NDGA, AA-861, CDC, baicalein, and PD146176) vs. vehicle-treated and mock-transfected controls. We detected the following primary intrinsic activities: 12-LOX (Alox12, Alox15), 15-LOX (Alox15b), and HXS (Alox12, Alox15). Similar to human and mouse orthologs, proteins encoded by rat Alox12b and Alox12e possessed minimal 12-LOX activity with AA as substrate, while eLOX3 (encoded by Aloxe3) exhibited HXS without 12-LOX activity when coexpressed with Alox12b or supplemented with 12-HpETE. CDC potently inhibited HXS and 12-LOX activity in vitro (relative IC50s: CDC, ~0.5 and 0.8 µM, respectively) and carrageenan-evoked tactile allodynia in vivo. Notably, peripheral inflammation significantly increased spinal eLOX3; intrathecal pretreatment with either siRNA targeting Aloxe3 or an eLOX3-selective antibody attenuated the associated allodynia. These findings implicate spinal eLOX3-mediated hepoxilin synthesis in inflammatory hyperesthesia and underscore the importance of developing more selective 12-LOX/HXS inhibitors.


Asunto(s)
Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Hiperalgesia/etiología , Oxidorreductasas Intramoleculares/metabolismo , Animales , Araquidonato 12-Lipooxigenasa/efectos de los fármacos , Araquidonato 15-Lipooxigenasa/efectos de los fármacos , Células HEK293 , Humanos , Inhibidores de la Lipooxigenasa/farmacología , Masculino , Ratas
11.
Res Sq ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38352503

RESUMEN

Nicotine use is a leading cause of preventable deaths worldwide, and most of those who attempt to quit will relapse. While electronic cigarettes and other electronic nicotine delivery systems (ENDS) were presented as a safer alternative to traditional cigarettes and promoted as devices to help traditional tobacco smokers reduce or quit smoking, they have instead contributed to increasing nicotine use among youths. Despite this, ENDS also represent a useful tool to create novel preclinical animal models of nicotine exposure that more accurately represent human nicotine use. In this study, we validated a chronic, intermittent, ENDS-based passive vapor exposure model in mice, and then measured changes in multiple behaviors related to nicotine abstinence. First, we performed a behavioral dose curve to investigate the effects of different nicotine inter-vape intervals on various measures including body weight, locomotor activity, and pain hypersensitivity. Next, we performed a pharmacokinetic study to measure plasma levels of nicotine and cotinine following chronic exposure for each inter-vape interval. Finally, we utilized a behavior test battery at a single dosing regimen that produces blood levels equivalent to human smokers in order to characterize the effects of chronic nicotine, vehicle, or passive airflow and identified nicotine-induced impairments in cognitive behavior.

12.
Sci Rep ; 14(1): 6646, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503831

RESUMEN

Nicotine use is a leading cause of preventable deaths worldwide, and most of those who attempt to quit will relapse. While electronic cigarettes and other electronic nicotine delivery systems (ENDS) were presented as a safer alternative to traditional cigarettes and promoted as devices to help traditional tobacco smokers reduce or quit smoking, they have instead contributed to increasing nicotine use among youths. Despite this, ENDS also represent a useful tool to create novel preclinical animal models of nicotine exposure that more accurately represent human nicotine use. In this study, we validated a chronic, intermittent, ENDS-based passive vapor exposure model in mice, and then measured changes in multiple behaviors related to nicotine abstinence. First, we performed a behavioral dose curve to investigate the effects of different nicotine inter-vape intervals on various measures including body weight, locomotor activity, and pain hypersensitivity. Next, we performed a pharmacokinetic study to measure plasma levels of nicotine and cotinine following chronic exposure for each inter-vape interval. Finally, we utilized a behavior test battery at a single dosing regimen that produces blood levels equivalent to human smokers in order to characterize the effects of chronic nicotine, vehicle, or passive airflow and identified nicotine-induced impairments in cognitive behavior.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Nicotina , Adolescente , Masculino , Humanos , Ratones , Animales , Fumar , Cotinina , Gases , Cognición
13.
Neurobiol Pain ; 14: 100135, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38099275

RESUMEN

N-acyl-ethanolamine (NAEs) serve as key endogenous lipid mediators as revealed by manipulation of fatty acid amide hydrolase (FAAH), the primary enzyme responsible for metabolizing NAEs. Preclinical studies focused on FAAH or NAE receptors indicate an important role for NAE signaling in nociception and affective behaviors. However, there is limited information on the role of NAE biosynthesis in these same behavioral paradigms. Biosynthesis of NAEs has been attributed largely to the enzyme N-acylphosphatidylethanolamine Phospholipase D (NAPE-PLD), one of three pathways capable of producing these bioactive lipids in the brain. In this report, we demonstrate that Nape-pld knockout (KO) mice displayed reduced sucrose preference and consumption, but other baseline anxiety-like or depression-like behaviors were unaltered. Additionally, we observed sex-dependent responses in thermal nociception and other baseline measures in wildtype (WT) mice that were absent in Nape-pld KO mice. In the Complete Freund's Adjuvant (CFA) model of inflammatory arthritis, WT mice exhibited sex-dependent changes in paw edema that were lost in Nape-pld KO mice. However, there was no effect of Nape-pld deletion on arthritic pain-like behaviors (grip force deficit and tactile allodynia) in either sex, indicating that while NAPE-PLD may alter local inflammation, it does not contribute to pain-like behaviors associated with inflammatory arthritis. Collectively, these findings indicate that chronic and systemic NAPE-PLD inactivation will likely be well-tolerated, warranting further pharmacological evaluation of this target in other disease indications.

14.
Brain Res ; 1817: 148483, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37442250

RESUMEN

Nicotine and tobacco-related deaths remains a leading cause of preventable death and disease in the United States. Several studies indicate that modulation of the endocannabinoid system, primarily of the endocannabinoid 2-Arachidonoylglycerol (2-AG), alters nicotinic dependence behaviors in rodents. This study, using transgenic knock-out (KO) mice, evaluated the role of the two 2-AG biosynthesis enzymes, (Diacylglycerol lipase-α) DAGL-α and DAGL-ß in spontaneous nicotine withdrawal. DAGL-α deletion prevents somatic and affective signs of nicotine withdrawal, while DAGL-ß deletion plays a role in hyperalgesia due to nicotine withdrawal. These results suggest a differential role of these enzymes in the various signs of nicotine withdrawal. Our behavioral findings relate to the distribution of these enzymes with DAGL-ß being highly expressed in macrophages and DAGL-α in neurons. This study offers new potential targets for smoking cessation therapies.


Asunto(s)
Síndrome de Abstinencia a Sustancias , Tabaquismo , Ratones , Animales , Nicotina , Lipoproteína Lipasa , Endocannabinoides , Ratones Noqueados
15.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778412

RESUMEN

Chemical platforms that facilitate both the identification and elucidation of new areas for therapeutic development are necessary but lacking. Activity-based protein profiling (ABPP) leverages active site-directed chemical probes as target discovery tools that resolve activity from expression and immediately marry the targets identified with lead compounds for drug design. However, this approach has traditionally focused on predictable and intrinsic enzyme functionality. Here, we applied our activity-based proteomics discovery platform to map non-encoded and post-translationally acquired enzyme functionalities (e.g. cofactors) in vivo using chemical probes that exploit the nucleophilic hydrazine pharmacophores found in a classic antidepressant drug (e.g. phenelzine, Nardil ® ). We show the probes are in vivo active and can map proteome-wide tissue-specific target engagement of the drug. In addition to engaging targets (flavoenzymes monoamine oxidase A/B) that are associated with the known therapeutic mechanism as well as several other members of the flavoenzyme family, the probes captured the previously discovered N -terminal glyoxylyl (Glox) group of Secernin-3 (SCRN3) in vivo through a divergent mechanism, indicating this functional feature has biochemical activity in the brain. SCRN3 protein is ubiquitously expressed in the brain, yet gene expression is regulated by inflammatory stimuli. In an inflammatory pain mouse model, behavioral assessment of nociception showed Scrn3 male knockout mice selectively exhibited impaired thermal nociceptive sensitivity. Our study provides a guided workflow to entangle molecular (off)targets and pharmacological mechanisms for therapeutic development.

16.
Biochim Biophys Acta ; 1811(11): 724-36, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21689782

RESUMEN

Fatty acid-derived eicosanoids and N-acylethanolamines (NAE) are important bioactive lipid mediators involved in numerous biological processes including cell signaling and disease progression. To facilitate research on these lipid mediators, we have developed a targeted high-throughput mass spectrometric based methodology to monitor and quantitate both eicosanoids and NAEs, and can be analyzed separately or together in series. Each methodology utilizes scheduled multiple reaction monitoring (sMRM) pairs in conjunction with a 25 min reverse-phase HPLC separation. The eicosanoid methodology monitors 141 unique metabolites and quantitative amounts can be determined for over 100 of these metabolites against standards. The analysis covers eicosanoids generated from cycloxygenase, lipoxygenase, cytochrome P450 enzymes, and those generated from non-enzymatic pathways. The NAE analysis monitors 36 metabolites and quantitative amounts can be determined for 33 of these metabolites against standards. The NAE method contains metabolites derived from saturated fatty acids, unsaturated fatty acids, and eicosanoids. The lower limit of detection for eicosanoids ranges from 0.1pg to 1pg, while NAEs ranges from 0.1pg to 1000pg. The rationale and design of the methodology is discussed.


Asunto(s)
Eicosanoides/análisis , Etanolaminas/análisis , Ensayos Analíticos de Alto Rendimiento/métodos , Metabolismo de los Lípidos , Animales , Dinoprostona/química , Eicosanoides/líquido cefalorraquídeo , Eicosanoides/química , Etanolaminas/líquido cefalorraquídeo , Etanolaminas/química , Ratas , Estándares de Referencia , Soluciones , Factores de Tiempo
17.
J Neurochem ; 123(4): 578-88, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22905672

RESUMEN

Adolescent smokers report enhanced positive responses to tobacco and fewer negative effects of withdrawal from this drug than adults, and this is believed to propel higher tobacco use during adolescence. Differential dopaminergic responses to nicotine are thought to underlie these age-related effects, as adolescent rats experience lower withdrawal-related deficits in nucleus accumbens (NAcc) dopamine versus adults. This study examined whether age differences in NAcc dopamine during withdrawal are mediated by excitatory or inhibitory transmission in the ventral tegmental area (VTA) dopamine cell body region. In vivo microdialysis was used to monitor extracellular levels of glutamate and gamma-aminobutyric acid (GABA) in the VTA of adolescent and adult rats experiencing nicotine withdrawal. In adults, nicotine withdrawal produced decreases in VTA glutamate levels (44% decrease) and increases in VTA GABA levels (38% increase). In contrast, adolescents did not exhibit changes in either of these measures. Naïve controls of both ages did not display changes in NAcc dopamine, VTA glutamate, or VTA GABA following mecamylamine. These results indicate that adolescents display resistance to withdrawal-related neurochemical processes that inhibit mesolimbic dopamine function in adults experiencing nicotine withdrawal. Our findings provide a potential mechanism involving VTA amino acid neurotransmission that modulates age differences during withdrawal.


Asunto(s)
Adaptación Fisiológica/fisiología , Dopamina/metabolismo , Sistema Límbico/metabolismo , Nicotina/efectos adversos , Agonistas Nicotínicos/efectos adversos , Síndrome de Abstinencia a Sustancias/patología , Adaptación Fisiológica/efectos de los fármacos , Factores de Edad , Análisis de Varianza , Animales , Cromatografía Líquida de Alta Presión , Diálisis , Electroquímica , Ácido Glutámico/metabolismo , Sistema Límbico/efectos de los fármacos , Masculino , Mecamilamina/farmacología , Antagonistas Nicotínicos/farmacología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Ratas , Ratas Wistar , Estadística como Asunto , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo , Ácido gamma-Aminobutírico/metabolismo
18.
Br J Pharmacol ; 179(11): 2589-2609, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35023154

RESUMEN

BACKGROUND AND PURPOSE: 'Food addiction' is the subject of intense public and research interest. However, this nosology based on neurobehavioural similarities among obese individuals, patients with eating disorders and those with substance use disorders (drug addiction) remains controversial. We thus sought to determine which aspects of disordered eating are causally linked to preclinical models of drug addiction. We hypothesized that extensive drug histories, known to cause addiction-like brain changes and drug motivation in rats, would also cause addiction-like food motivation. EXPERIMENTAL APPROACH: Rats underwent extensive cocaine, alcohol, caffeine or obesogenic diet histories and were subsequently tested for punishment-resistant food self-administration or 'compulsive appetite', as a measure of addiction-like food motivation. KEY RESULTS: Extensive cocaine and alcohol (but not caffeine) histories caused compulsive appetite that persisted long after the last drug exposure. Extensive obesogenic diet histories also caused compulsive appetite, although neither cocaine nor alcohol histories caused excess calorie intake and bodyweight during abstinence. Hence, compulsive appetite and obesity appear to be dissociable, with the former sharing common mechanisms with preclinical drug addiction models. CONCLUSION AND IMPLICATIONS: Compulsive appetite, as seen in subsets of obese individuals and patients with binge-eating disorder and bulimia nervosa (eating disorders that do not necessarily result in obesity), appears to epitomize 'food addiction'. Because different drug and obesogenic diet histories caused compulsive appetite, overlapping dysregulations in the reward circuits, which control drug and food motivation independently of energy homeostasis, may offer common therapeutic targets for treating addictive behaviours across drug addiction, eating disorders and obesity.


Asunto(s)
Conducta Adictiva , Cocaína , Adicción a la Comida , Trastornos Relacionados con Sustancias , Animales , Apetito , Conducta Alimentaria , Alimentos , Adicción a la Comida/complicaciones , Humanos , Obesidad/etiología , Preparaciones Farmacéuticas , Ratas
19.
J Immunol ; 183(9): 5644-53, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19843949

RESUMEN

The cyclooxygenase (COX) enzymes are known modulators of innate immune cell function; however, their contributions to adaptive immunity are relatively unknown. We investigated the roles of COX-1 and COX-2 in the humoral immune response to infection with the Lyme disease pathogen Borrelia burgdorferi. We report that in vitro, murine B cells constitutively expressed COX-1 and up-regulated expression of both COX-1 and COX-2 as well as their products PGE(2), PGF(2alpha), and thromboxane B(2) and their receptors following stimulation with B. burgdorferi or anti-CD40. In vitro inhibition of COX-1 and/or COX-2 in murine B cells resulted in decreased eicosanoid production and altered Ab production. Importantly, infection of mice lacking COX-1, but not COX-2, activity resulted in a defect in Ig class-switching and a lack of Borrelia-specific IgG production. This defect correlated with decreased germinal center formation and IL-6 and IL-17 production, and it could be partially recovered by restoration of IL-6, but fully recovered by IL-17. Furthermore, sera from COX-1 inhibitor-treated mice were dramatically less effective in killing B. burgdorferi, but borreliacidal activity was restored in COX-1 inhibitor-treated mice administered IL-17. We conclude that IL-17 plays a role in Ab production and Ig class-switching in response to infection and that COX-1 is a critical, previously unrecognized regulator of this response.


Asunto(s)
Ciclooxigenasa 1/fisiología , Centro Germinal/inmunología , Centro Germinal/metabolismo , Cambio de Clase de Inmunoglobulina , Interleucina-17/metabolismo , Proteínas de la Membrana/fisiología , Animales , Anticuerpos Antibacterianos/biosíntesis , Anticuerpos Antibacterianos/clasificación , Subgrupos de Linfocitos B/enzimología , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/microbiología , Borrelia burgdorferi/inmunología , Células Cultivadas , Ciclooxigenasa 1/biosíntesis , Ciclooxigenasa 1/deficiencia , Ciclooxigenasa 1/genética , Ciclooxigenasa 2/biosíntesis , Ciclooxigenasa 2/deficiencia , Ciclooxigenasa 2/metabolismo , Femenino , Centro Germinal/microbiología , Cambio de Clase de Inmunoglobulina/genética , Inmunoglobulina G/biosíntesis , Inmunoglobulina M/biosíntesis , Interleucina-17/administración & dosificación , Interleucina-17/biosíntesis , Enfermedad de Lyme/enzimología , Enfermedad de Lyme/inmunología , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Regulación hacia Arriba/genética , Regulación hacia Arriba/inmunología
20.
Pain ; 162(8): 2186-2200, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34256379

RESUMEN

ABSTRACT: Pain is the primary motivation for seeking medical care. Although pain may subside as inflammation resolves or an injury heals, it is increasingly evident that persistency of the pain state can occur with significant regularity. Chronic pain requires aggressive management to minimize its physiological consequences and diminish its impact on quality of life. Although opioids commonly are prescribed for intractable pain, concerns regarding reduced efficacy, as well as risks of tolerance and dependence, misuse, diversion, and overdose mortality rates limit their utility. Advances in development of nonopioid interventions hinge on our appreciation of underlying mechanisms of pain hypersensitivity. For instance, the contributory role of immunity and the associated presence of autoimmune syndromes has become of particular interest. Males and females exhibit fundamental differences in innate and adaptive immune responses, some of which are present throughout life, whereas others manifest with reproductive maturation. In general, the incidence of chronic pain conditions, particularly those with likely autoimmune covariates, is significantly higher in women. Accordingly, evidence is now accruing in support of neuroimmune interactions driving sex differences in the development and maintenance of pain hypersensitivity and chronicity. This review highlights known sexual dimorphisms of neuroimmune signaling in pain states modeled in rodents, which may yield potential high-value sex-specific targets to inform future analgesic drug discovery efforts.


Asunto(s)
Dolor Crónico , Caracteres Sexuales , Analgésicos Opioides , Femenino , Humanos , Masculino , Neuroglía , Calidad de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA