Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Chembiochem ; 20(20): 2643-2652, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31012235

RESUMEN

The bottom-up construction of cell mimics has produced a range of membrane-bound protocells that have been endowed with functionality and biochemical processes reminiscent of living systems. The contents of these compartments, however, experience semidilute conditions, whereas macromolecules in the cytosol exist in protein-rich, crowded environments that affect their physicochemical properties, such as diffusion and catalytic activity. Recently, complex coacervates have emerged as attractive protocellular models because their condensed interiors would be expected to mimic this crowding better. Here we explore some relevant physicochemical properties of a recently developed polymer-stabilized coacervate system, such as the diffusion of macromolecules in the condensed coacervate phase, relative to in dilute solutions, the buffering capacity of the core, the molecular organization of the polymer membrane, the permeability characteristics of this membrane towards a wide range of compounds, and the behavior of a simple enzymatic reaction. In addition, either the coacervate charge or the cargo charge is engineered to allow the selective loading of protein cargo into the coacervate protocells. Our in-depth characterization has revealed that these polymer-stabilized coacervate protocells have many desirable properties, thus making them attractive candidates for the investigation of biochemical processes in stable, controlled, tunable, and increasingly cell-like environments.


Asunto(s)
Células Artificiales/química , Sustancias Macromoleculares/química , Polímeros/química , Proteínas/química , Células Artificiales/citología
2.
Acc Chem Res ; 50(4): 769-777, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28094501

RESUMEN

Cells are highly advanced microreactors that form the basis of all life. Their fascinating complexity has inspired scientists to create analogs from synthetic and natural components using a bottom-up approach. The ultimate goal here is to assemble a fully man-made cell that displays functionality and adaptivity as advanced as that found in nature, which will not only provide insight into the fundamental processes in natural cells but also pave the way for new applications of such artificial cells. In this Account, we highlight our recent work and that of others on the construction of artificial cells. First, we will introduce the key features that characterize a living system; next, we will discuss how these have been imitated in artificial cells. First, compartmentalization is crucial to separate the inner chemical milieu from the external environment. Current state-of-the-art artificial cells comprise subcompartments to mimic the hierarchical architecture of eukaryotic cells and tissue. Furthermore, synthetic gene circuits have been used to encode genetic information that creates complex behavior like pulses or feedback. Additionally, artificial cells have to reproduce to maintain a population. Controlled growth and fission of synthetic compartments have been demonstrated, but the extensive regulation of cell division in nature is still unmatched. Here, we also point out important challenges the field needs to overcome to realize its full potential. As artificial cells integrate increasing orders of functionality, maintaining a supporting metabolism that can regenerate key metabolites becomes crucial. Furthermore, life does not operate in isolation. Natural cells constantly sense their environment, exchange (chemical) signals, and can move toward a chemoattractant. Here, we specifically explore recent efforts to reproduce such adaptivity in artificial cells. For instance, synthetic compartments have been produced that can recruit proteins to the membrane upon an external stimulus or modulate their membrane composition and permeability to control their interaction with the environment. A next step would be the communication of artificial cells with either bacteria or another artificial cell. Indeed, examples of such primitive chemical signaling are presented. Finally, motility is important for many organisms and has, therefore, also been pursued in synthetic systems. Synthetic compartments that were designed to move in a directed, controlled manner have been assembled, and directed movement toward a chemical attractant is among one of the most life-like directions currently under research. Although the bottom-up construction of an artificial cell that can be truly considered "alive" is still an ambitious goal, the recent work discussed in this Account shows that this is an active field with contributions from diverse disciplines like materials chemistry and biochemistry. Notably, research during the past decade has already provided valuable insights into complex synthetic systems with life-like properties. In the future, artificial cells are thought to contribute to an increased understanding of processes in natural cells and provide opportunities to create smart, autonomous, cell-like materials.


Asunto(s)
Células Artificiales/metabolismo
3.
J Am Chem Soc ; 139(48): 17309-17312, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29134798

RESUMEN

Complex coacervate microdroplets are finding increased utility in synthetic cell applications due to their cytomimetic properties. However, their intrinsic membrane-free nature results in instability that limits their application in protocell research. Herein, we present the development of a new protocell model through the spontaneous interfacial self-assembly of copolymer molecules on biopolymer coacervate microdroplets. This hierarchical protocell model not only incorporates the favorable properties of coacervates (such as spontaneous assembly and macromolecular condensation) but also assimilates the essential features of a semipermeable copolymeric membrane (such as discretization and stabilization). This was accomplished by engineering an asymmetric, biodegradable triblock copolymer molecule comprising hydrophilic, hydrophobic, and polyanionic components capable of direct coacervate membranization via electrostatic surface anchoring and chain self-association. The resulting hierarchical protocell demonstrated striking integrity as a result of membrane formation, successfully stabilizing enzymatic cargo against coalescence and fusion in discrete protocellular populations. The semipermeable nature of the copolymeric membrane enabled the incorporation of a simple enzymatic cascade, demonstrating chemical communication between discrete populations of neighboring protocells. In this way, we pave the way for the development of new synthetic cell constructs.

4.
Angew Chem Int Ed Engl ; 56(41): 12581-12585, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28772021

RESUMEN

Naturally occurring systems have the ability to self-regulate, which plays a key role in their structural and functional adaptation. The autonomous behavior in living systems is biocatalytically controlled by the continuous consumption of energy to remain in a non-equilibrium condition. In this work, we show the construction of a self-regulated "breathing" microgel that uses chemical fuels to keep the system in the out-of-equilibrium state. The enzyme urease is utilized to program a feedback-induced pH change, which in turn tunes the size switch and fluorescence intensity of the microgel. A continuous supply of chemical fuels to the system allows the process to be reversible. This microgel with tunable autonomous properties provides insights into the design of artificial systems and dynamic soft materials.


Asunto(s)
Enzimas Inmovilizadas/química , Geles/química , Metacrilatos/química , Nylons/química , Ureasa/química , Biocatálisis , Fluorescencia , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Urea/química
5.
Chem Commun (Camb) ; 59(5): 579-582, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36520138

RESUMEN

Population behavior based on quorum sensing communication is a key property of living microorganisms. Here, we show quorum sensing behavior in an artificial cell population consisting of giant lipid vesicles loaded with sender-receiver machinery (enzymes and responsive biomolecules). Our system allows the examination of the collective output based on cell density, fuel concentration and proximity, which are important factors controlling natural quorum sensing behavior.


Asunto(s)
Células Artificiales , Percepción de Quorum , Regulación Bacteriana de la Expresión Génica , Lípidos , Comunicación Celular
6.
Nat Commun ; 11(1): 1652, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32246068

RESUMEN

Multicellular organisms rely on intercellular communication to coordinate the behaviour of individual cells, which enables their differentiation and hierarchical organization. Various cell mimics have been developed to establish fundamental engineering principles for the construction of artificial cells displaying cell-like organization, behaviour and complexity. However, collective phenomena, although of great importance for a better understanding of life-like behaviour, are underexplored. Here, we construct collectives of giant vesicles that can communicate with each other through diffusing chemical signals that are recognized and processed by synthetic enzymatic cascades. Similar to biological cells, the Receiver vesicles can transduce a weak signal originating from Sender vesicles into a strong response by virtue of a signal amplification step, which facilitates the propagation of signals over long distances within the artificial cell consortia. This design advances the development of interconnected artificial cells that can exchange metabolic and positional information to coordinate their higher-order organization.


Asunto(s)
Células Artificiales , Comunicación Celular , Regulación Alostérica , Células Artificiales/química , Células Artificiales/metabolismo , Biología Sintética/métodos
7.
Chem Sci ; 11(47): 12829-12834, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34094478

RESUMEN

Structural and spatial organization are fundamental properties of biological systems that allow cells to regulate a wide range of biochemical processes. This organization is often transient and governed by external cues that initiate dynamic self-assembly processes. The construction of synthetic cell-like materials with similar properties requires the hierarchical and reversible organization of selected functional components on molecular scaffolds to dynamically regulate signaling pathways. The realization of such transient molecular programs in synthetic cells, however, remains underexplored due to the associated complexity of such hierarchical platforms. In this contribution, we effectuate dynamic spatial organization of effector protein subunits in a synthetic biomimetic compartment, a giant unilamellar vesicle (GUV), by associating in a reversible manner two fragments of a split luciferase to the membrane. This induces their structural dimerization, which consequently leads to the activation of enzymatic signaling. Importantly, such organization and activation are dynamic processes, and can be autonomously regulated - thus opening up avenues toward continuous spatiotemporal control over supramolecular organization and signaling in an artificial cell.

8.
Auto Immun Highlights ; 6(1-2): 23-30, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26113482

RESUMEN

PURPOSE: Recent studies have demonstrated that serum/plasma DNA and RNA molecules in addition to proteins can serve as biomarkers. Elevated levels of these nucleic acids have been found not only in acute, but also in chronic conditions, including autoimmune diseases. The aim of this study was to assess cell-free DNA (cfDNA) levels in sera of rheumatoid arthritis (RA) patients compared to controls. METHODS: cfDNA was extracted from sera of patients with early and established RA, relapsing-remitting multiple sclerosis patients (RRMS) and healthy subjects, and its concentration was determined by quantitative PCR using two amplicons, Alu115 and ß-actin205, corresponding to Alu repetitive elements and the ß-actin single-copy gene, respectively. Serum DNase activity was measured by a single radial enzyme diffusion method. RESULTS: Reduced levels of cfDNA were observed in patients with established RA in comparison with healthy controls, early RA patients and RRMS patients. There were no significant differences in cfDNA concentration between healthy controls, early RA and RRMS patients. Total DNase activity appeared to be similar in the sera of all tested groups. CONCLUSIONS: Our results demonstrate that cfDNA levels are strongly reduced in the sera of established RA patients, which is not caused by changes in DNase activity. Measurement of cfDNA can distinguish established RA patients from early RA patients. Thus, cfDNA may serve as a biomarker in RA.

9.
Macromol Biosci ; 15(1): 36-51, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25407963

RESUMEN

Elastin-like polypeptides (ELPs) are characterized by a high sequence control, temperature responsiveness and biocompatibility, which make them highly interesting as smart materials for application in nanomedicine. In particular the construction of ELP-based nanoparticles has recently become a focal point of attention in materials research. This review will give an overview of the ELP-based nanoparticles that have been developed until now and their underlying design principles. First a short introduction on ELPs and their stimulus-responsive behavior will be given. This characteristic has been applied for the development of ELP-based block copolymers that can self-assemble into nanoparticles. Both the fully ELP-based as well as several ELP hybrid materials that have been reported to form nanoparticles will be discussed, which is followed by a concise description of the promising biomedical applications reported for this class of materials.


Asunto(s)
Diseño de Fármacos , Elastina/biosíntesis , Nanomedicina/métodos , Nanopartículas/química , Biosíntesis de Péptidos/fisiología , Péptidos/metabolismo , Elastina/metabolismo , Nanopartículas/metabolismo , Péptidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA