RESUMEN
Effects of aerosols such as black carbon (BC) on climate and buildup of the monsoon over the Indian Ocean are insufficiently quantified. Uncertain contributions from various natural and anthropogenic sources impede our understanding. Here, we use observations over 5 y of BC and its isotopes at a remote island observatory in northern Indian Ocean to constrain loadings and sources during little-studied monsoon season. Carbon-14 data show a highly variable yet largely fossil (65 ± 15%) source mixture. Combining carbon-14 with carbon-13 reveals the impact of African savanna burning, which occasionally approach 50% (48 ± 9%) of the total BC loadings. The BC mass-absorption cross-section for this regime is 7.6 ± 2.6 m2/g, with higher values during savanna fire input. Taken together, the combustion sources, longevity, and optical properties of BC aerosols over summertime Indian Ocean are different than the more-studied winter aerosol, with implications for chemical transport and climate model simulations of the Indian monsoon.
RESUMEN
South Asian air is among the most polluted in the world, causing premature death of millions and asserting a strong perturbation of the regional climate. A central component is carbon monoxide (CO), which is a key modulator of the oxidizing capacity of the atmosphere and a potent indirect greenhouse gas. While CO concentrations are declining elsewhere, South Asia exhibits an increasing trend for unresolved reasons. In this paper, we use dual-isotope (δ13C and δ18O) fingerprinting of CO intercepted in the South Asian outflow to constrain the relative contributions from primary and secondary CO sources. Results show that combustion-derived primary sources dominate the wintertime continental CO fingerprint (fprimary â¼ 79 ± 4%), significantly higher than the global estimate (fprimary â¼ 55 ± 5%). Satellite-based inventory estimates match isotope-constrained fprimary-CO, suggesting observational convergence in source characterization and a prospect for model-observation reconciliation. This "ground-truthing" emphasizes the pressing need to mitigate incomplete combustion activities for climate/air quality benefits in South Asia.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monóxido de Carbono , Monitoreo del Ambiente , Material Particulado/análisisRESUMEN
Black carbon (BC) aerosols perturb climate and impoverish air quality/human health-affecting â¼1.5 billion people in South Asia. However, the lack of source-diagnostic observations of BC is hindering the evaluation of uncertain bottom-up emission inventories (EIs) and thereby also models/policies. Here, we present dual-isotope-based (Δ14C/δ13C) fingerprinting of wintertime BC at two receptor sites of the continental outflow. Our results show a remarkable similarity in contributions of biomass and fossil combustion, both from the site capturing the highly populated highly polluted Indo-Gangetic Plain footprint (IGP; Δ14C-fbiomass = 50 ± 3%) and the second site in the N. Indian Ocean representing a wider South Asian footprint (52 ± 6%). Yet, both sites reflect distinct δ13C-fingerprints, indicating a distinguishable contribution of C4-biomass burning from peninsular India (PI). Tailored-model-predicted season-averaged BC concentrations (700 ± 440 ng m-3) match observations (740 ± 250 ng m-3), however, unveiling a systematically increasing model-observation bias (+19% to -53%) through winter. Inclusion of BC from open burning alone does not reconcile predictions (fbiomass = 44 ± 8%) with observations. Direct source-segregated comparison reveals regional offsets in anthropogenic emission fluxes in EIs, overestimated fossil-BC in the IGP, and underestimated biomass-BC in PI, which contributes to the model-observation bias. This ground-truthing pinpoints uncertainties in BC emission sources, which benefit both climate/air-quality modeling and mitigation policies in South Asia.
Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Asia , Carbono/análisis , Monitoreo del Ambiente , Humanos , Océano Índico , Isótopos , Estaciones del AñoRESUMEN
This study focuses on the chemical composition of cloud water (CW) and rainwater (RW) collected at Sinhagad, a high-altitude station (1450 m AMSL) located in the western region of India. The samples were collected during the monsoon over two years (2016-2017). The chemical analysis suggests that the concentration of total ionic constituents was three times higher in CW than in RW, except for NH4+ (1.0) and HCO3- (0.6). Compared to RW, high concentrations of SO42- and NO3- were observed in CW. The weighted average RW pH (6.5 ± 0.3) was slightly more alkaline than CW pH (6.1 ± 0.5). This can be attributed to the high concentrations of neutralizing ions such as nss-Ca2+, nss-Mg2+, K+, and NH4+, indicating the greater extent of wet scavenging during rainfall. These ions counteract the acidity generated by SO42- and NO3-. A high correlation between Ca2+, Na+, K+, NO3-, and SO42- makes it difficult to estimate the contribution of SO42- from different sources. Anthropogenic sulfur emissions and soil dust significantly influence the ionic composition of clouds and rain. Positive matrix factorization (PMF) was used to identify the contribution of different sources to the samples. In the CW, the extracted factors were cooking and vehicles, aging sea salt, agriculture, and dust. In RW, the factors were industries, cooking and vehicles, agriculture and dust, and aging sea salt. The findings of this study have significant implications for the monsoon build-up, ecosystems, agriculture, and climate change.
Asunto(s)
Altitud , Monitoreo del Ambiente , Lluvia , IndiaRESUMEN
Black Carbon (BC), formed by incomplete combustion, absorbs solar radiation and heats the atmosphere. We investigated the enhancement in optical absorption of BC due to coatings of water-soluble (WS) species in the polluted South Asian atmosphere. The BC Mass Absorption Cross-section (MAC; 678 nm) was estimated before and after removal of the WS components. Wintertime samples were collected from three South Asian receptor observatories intercepting large-footprint outflow: Bangladesh Climate Observatory Bhola (BCOB; integrating outflow of the Indo-Gangetic Plain), Maldives Climate Observatories at Hanimaadhoo (MCOH) and at Gan (MCOG), both reflecting outflow from the South Asian region. The ambient MAC observed at BCOB, MCOH and MCOG were 4.2 ± 1.4, 7.9 ± 1.9 and 7.1 ± 1.5 m2 g-1, respectively. The average enhancement of the BC MAC due to WS coatings (i.e., ws-EMAC) was identical at all three sites (1.6 ± 0.5) indicating that the anthropogenic aerosols had already evolved to a fully coated morphology at BCOB and/or that subsequent aging involved two compensating evolution processes of the coating. Inspecting the key coating component sulfate; the sulfate-to-BC ratio increased threefold when transitioning from BCOB to MCOH and by about 1.5 times from BCOB to MCOG. Conversely, both WS organic carbon (WSOC)/BC and water-insoluble OC (WIOC)/BC ratios declined with distance: WSOC/BC diminished by 84 % from BCOB to MCOH and by 80 % from BCOB to MCOG, while WIOC/BC dropped by about 63 % and 59 %, respectively. Such declines in WSOC and WIOC reflect a combination of photochemical oxidation and more efficient washout of OC compared to BC. The observed changes in the SO42-/BC and WSOC/BC ratios across South Asia highlight the significant impact of aerosol composition on the optical properties of Black Carbon (BC). These findings emphasize the need for detailed studies on aerosol composition to improve climate models and develop effective strategies for reducing the impact of anthropogenic aerosols on the climate.
RESUMEN
Anthropogenic aerosols mask the climate warming caused by greenhouse gases (GHGs). In the absence of observational constraints, large uncertainties plague the estimates of this masking effect. Here we used the abrupt reduction in anthropogenic emissions observed during the COVID-19 societal slow-down to characterize the aerosol masking effect over South Asia. During this period, the aerosol loading decreased substantially and our observations reveal that the magnitude of this aerosol demasking corresponds to nearly three-fourths of the CO2-induced radiative forcing over South Asia. Concurrent measurements over the northern Indian Ocean unveiled a ~7% increase in the earth's surface-reaching solar radiation (surface brightening). Aerosol-induced atmospheric solar heating decreased by ~0.4 K d-1. Our results reveal that under clear sky conditions, anthropogenic emissions over South Asia lead to nearly 1.4 W m-2 heating at the top of the atmosphere during the period March-May. A complete phase-out of today's fossil fuel combustion to zero-emission renewables would result in rapid aerosol demasking, while the GHGs linger on.
RESUMEN
Light-absorbing organic aerosols, known as brown carbon (BrC), counteract the overall cooling effect of aerosols on Earth's climate. The spatial and temporal dynamics of their light-absorbing properties are poorly constrained and unaccounted for in climate models, because of limited ambient observations. We combine carbon isotope forensics (δ13C) with measurements of light absorption in a conceptual aging model to constrain the loss of light absorptivity (i.e., bleaching) of water-soluble BrC (WS-BrC) aerosols in one of the world's largest BrC emission regions-South Asia. On this regional scale, we find that atmospheric photochemical oxidation reduces the light absorption of WS-BrC by ~84% during transport over 6000 km in the Indo-Gangetic Plain, with an ambient first-order bleaching rate of 0.20 ± 0.05 day-1 during over-ocean transit across Bay of Bengal to an Indian Ocean receptor site. This study facilitates dynamic parameterization of WS-BrC absorption properties, thereby constraining BrC climate impact over South Asia.
RESUMEN
Particulate matter with size less than or equal to 2.5 µm (PM2.5) samples were collected from an urban site Pune, India, during April 2015 to April 2016. The samples were analyzed for various chemical constituents, including water soluble inorganic ions, organic carbon (OC), and elemental carbon (EC). The yearly mean total mass concentration of PM2.5 at Pune was 37.3 µg/m3, which is almost four times higher than the annual WHO standard (10 µg/m3), and almost equal to that recommended by the Central Pollution Control Board, India (40 µg/m3). Measured (OC, EC) and estimated organic matter (OM) were the dominant component (56 ± 11%) in the total particulate matter which play major role in the regional atmospheric chemistry. Total measured inorganic components formed about 35% of PM2.5. Major chemical contributors to PM2.5 mass were OC (30%), SO42- (13%), and Cl- and EC (9% each). The high ratios of OC/EC demonstrated the existence of secondary organic carbon. The air mass origin and correlations between the various components indicate that long range transport of pollutants from Indo-Gangetic Plain (IGP) and Southern part of the Arabian Peninsula might have contributed to the high aerosol mass during the dry and winter seasons. To our knowledge, this is the first systematic study that comprehensively explores the chemical characterization and source apportionment of PM2.5 aerosol speciation in Pune by applying multiple approaches based on a seasonal perspective. This study is broadly applicable to understanding the differences in anthropogenic and natural sources in the urban environment of particle air pollution over this region.
Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año , Aerosoles/análisis , Carbono/análisis , Clima , India , Iones/análisis , Tamaño de la Partícula , AguaRESUMEN
Atmospheric aerosols play a major role in the global climate change. A better physical characterization of the chemical composition of atmospheric aerosols, especially in remote atmosphere, is an important step to reduce the current uncertainty in their effect on the radiative forcing of the climate. In the present work, surface aerosols have been studied over the Southern Ocean and over Bharati, Indian Research Station at Larsemann Hills at the Antarctic coast during the summer season of 2009-2010. Aerosol samples were collected using optical particle counter (OPC) and high-volume air sampler. PM10 and PM2.5 aerosol samples were analyzed for various water-soluble and acid-soluble ionic constituents. The Hysplit model was used to compute the history of the air masses for their possible origin. Supplementary measurements of meteorological parameters were also used. The average mass concentration for PM10 over the Southern Ocean was found to be 13.4 µg m(3). Over coastal Antarctica, the mass of PM10 was 5.13 µg m(-3), whereas that of PM2.5 was 4.3 µg m(-3). Contribution of marine components, i.e., Na, Cl and Mg was dominant over the Southern Ocean (79 %) than over the coastal Antarctica where they were dominant in coarse mode (67 %) than in fine mode (53 %) aerosols. The NH4/nss-SO4 ratio of 1.12 in PM2.5 indicates that the NH4 and SO4 ions were in the form of NH4HSO4. Computation of enrichment factors indicate that elements of anthropogenic origin, e.g., Zn, Cu, Pb, etc., were highly enriched with respect to crustal composition.
Asunto(s)
Aerosoles/análisis , Aerosoles/química , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Monitoreo del Ambiente , Estaciones del Año , Regiones Antárticas , Cambio Climático , Concentración de Iones de Hidrógeno , Nieve/química , Factores de TiempoRESUMEN
Urban-like plumes of gases and particulate matter originating from the South Asian region are frequently observed over the Indian Ocean, especially during the dry winter period. However, in addition to the strong sources on mainland South Asia, there are also local Maldivian emissions. The local contributions to the load of fine particulate matter (PM2.5) in the Maldivian capital Malé was assessed using the well-established Maldives Climate Observatory at Hanimaadhoo (MCOH) to represent local background, recording the long-range transported component for a full-year synoptic campaign at both sites in 2013. The year-round levels in both Malé and MCOH are strongly influenced by the seasonality of the monsoon cycle, including precipitation patterns and air-mass transport pathways, with lower levels during the wet summer season. The annual-average PM2.5 levels in Malé are higher (avg. 19 µg/m3) than at MCOH (avg. 13 µg/m3) with the difference being the largest during the summer, when local emissions play a larger role. The 24-h World Health Organization (WHO) PM2.5 health guideline was surpassed for the weeklong collections in 71% of the cases in Malé and in 74% of the cases for Hanimaadhoo. This study shows that in the dry/winter season 90±11% of PM2.5 levels in Malé could be from long-range transport with only 8±11% from local emissions while in the wet/monsoon season the relative contributions are about equal. The concentrations of organic carbon (OC) and elemental carbon (EC) showed similar seasonal patterns as bulk mass PM2.5. The relative contribution of total carbonaceous matter to bulk mass PM2.5 was 17% in Malé and 13% at MCOH, suggesting larger contributions from incomplete combustion practices in the Malé local region.