Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Nat Prod ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780134

RESUMEN

Biodiscovery efforts in Indonesia have aimed to explore the understudied chemical diversity of its rich lichen flora, seeking to find new products endowed with significant biological properties. The chemical screening of a Teloschistes flavicans extract led to selection of this species for further investigation. LC/MS and 1H NMR-based dereplication pinpointed six chlorodepsidones from the thallus of a sample of this lichen. This led to the streamlined isolation and the subsequent structure elucidation of the three new compounds norflavicansone 1, flavicansone 2, and isocaloploicin 3, along with the known chlorodepsidones 4-6, stictic acid 7, aurantiamide acetate 8, and parietin 9. The challenging structure elucidation of these proton-deficient metabolites benefited from a state-of-the-art workflow involving a synergistic combination of Computer-Assisted Structure Elucidation (CASE) and Density Functional Theory (DFT) calculations of the top-ranked candidates. This investigation also led to the revision of flavicansone's structure, previously described from this species. The three new molecules that are being reported here are remarkable in that they represent hybrid depsidones in which one of the aromatic rings is derived from orsellinic acid and the other is derived from ß-orcinol, a rare structural feature for lichen depsidones.

2.
Magn Reson Chem ; 62(8): 573-582, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38511664

RESUMEN

ß-lactams are a chemically diverse group of molecules with a wide range of biological activities. Having recently observed curious trends in 2JHH coupling values in studies on this structural class, we sought to obtain a more comprehensive understanding of these diagnostic NMR parameters, specifically interrogating 1JCH, 2JCH, and 2JHH, to differentiate 3- and 4-monosubstituted ß-lactams. Further investigation using computational chemistry methods was employed to explore the geometric and electronic origins for the observed and calculated differences between the two substitution patterns.

3.
Molecules ; 28(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175206

RESUMEN

Natural products remain one of the major sources of coveted, biologically active compounds. Each isolated compound undergoes biological testing, and its structure is usually established using a set of spectroscopic techniques (NMR, MS, UV-IR, ECD, VCD, etc.). However, the number of erroneously determined structures remains noticeable. Structure revisions are very costly, as they usually require extensive use of spectroscopic data, computational chemistry, and total synthesis. The cost is particularly high when a biologically active compound is resynthesized and the product is inactive because its structure is wrong and remains unknown. In this paper, we propose using Computer-Assisted Structure Elucidation (CASE) and Density Functional Theory (DFT) methods as tools for preventive verification of the originally proposed structure, and elucidation of the correct structure if the original structure is deemed to be incorrect. We examined twelve real cases in which structure revisions of natural products were performed using total synthesis, and we showed that in each of these cases, time-consuming total synthesis could have been avoided if CASE and DFT had been applied. In all described cases, the correct structures were established within minutes of using the originally published NMR and MS data, which were sometimes incomplete or had typos.

4.
Molecules ; 28(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36838545

RESUMEN

The UHPLC-HRMS analysis of Cortinarius ominosus basidiomata extract revealed that this mushroom accumulated elevated yields of an unreported specialized metabolite. The molecular formula of this unknown compound, C17H10O8, indicated that a challenging structure elucidation lay ahead, owing to its critically low H/C atom ratio. The structure of this new isolate, namely ominoxanthone (1), could not be solved from the interpretation of the usual set of 1D/2D NMR data that conveyed too limited information to afford a single, unambiguous structure. To remedy this, a Computer-Assisted Structure Elucidation (CASE) workflow was used to rank the different possible structure candidates consistent with our scarce spectroscopic data. DFT-based chemical shift calculations on a limited set of top-ranked structures further ascertained the determined structure for ominoxanthone. Although the determined scaffold of ominoxanthone is unprecedented as a natural product, a plausible biosynthetic scenario involving a precursor known from cortinariaceous sources and classical biogenetic reactions could be proposed.


Asunto(s)
Productos Biológicos , Xantonas , Estructura Molecular , Espectroscopía de Resonancia Magnética , Xantonas/química , Productos Biológicos/química
5.
Molecules ; 28(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985422

RESUMEN

Density functional theory (DFT) benchmark studies of 1H and 13C NMR chemical shifts often yield differing conclusions, likely due to non-optimal test molecules and non-standardized data acquisition. To address this issue, we carefully selected and measured 1H and 13C NMR chemical shifts for 50 structurally diverse small organic molecules containing atoms from only the first two rows of the periodic table. Our NMR dataset, DELTA50, was used to calculate linear scaling factors and to evaluate the accuracy of 73 density functionals, 40 basis sets, 3 solvent models, and 3 gauge-referencing schemes. The best performing DFT methodologies for 1H and 13C NMR chemical shift predictions were WP04/6-311++G(2d,p) and ωB97X-D/def2-SVP, respectively, when combined with the polarizable continuum solvent model (PCM) and gauge-independent atomic orbital (GIAO) method. Geometries should be optimized at the B3LYP-D3/6-311G(d,p) level including the PCM solvent model for the best accuracy. Predictions of 20 organic compounds and natural products from a separate probe set had root-mean-square deviations (RMSD) of 0.07 to 0.19 for 1H and 0.5 to 2.9 for 13C. Maximum deviations were less than 0.5 and 6.5 ppm for 1H and 13C, respectively.

6.
Chem Res Toxicol ; 35(3): 459-474, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35156375

RESUMEN

Acyl glucuronide (AG) metabolites of carboxylic acid-containing drugs and products of their transformations have long been implicated in drug-induced liver injury (DILI). To inform on the DILI risk arising from AG reactive intermediates, a comprehensive mechanistic study of enzyme-independent AG rearrangements using nuclear magnetic resonance (NMR) and density functional theory (DFT) was undertaken. NMR spectroscopy was utilized for structure elucidation and kinetics measurements of nine rearrangement and hydrolysis products of 1ß-O-acyl glucuronide of ibufenac. To extract rate constants of rearrangement, mutarotation, and hydrolysis from kinetic data, 11 different kinetic models were examined. Model selection and estimated rate constant verification were supported by measurements of H/D kinetic isotope effects. DFT calculations of ground and transition states supported the proposed kinetic mechanisms and helped to explain the unusually fast intramolecular transacylation rates found for some of the intermediates. The findings of the current study reinforce the notion that the short half-life of parent AG and slow hydrolysis rates of AG rearrangement products are the two key factors that can influence the in vivo toxicity of AGs.


Asunto(s)
Glucurónidos , Acilación , Glucurónidos/metabolismo , Cinética , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares
7.
Magn Reson Chem ; 60(2): 210-220, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34469610

RESUMEN

Modification of the recently reported 19 F-detected 1,1-ADEQUATE experiment that incorporates dual-optimization to selectively invert a wide range of 1 JCC correlations in a 1,n-ADEQUATE experiment is reported. Parameters for the dual-optimization segment of the pulse sequence were modified to accommodate the increased size of 1 JCC homonuclear coupling constants of poly- and perfluorinated molecules relative to protonated molecules to allow broadband inversion of the 1 JCC correlations. The observation and utility of isotope shifts are reported for the first time for 1,1- and 1,n-ADEQUATE correlations.

8.
Molecules ; 27(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35056732

RESUMEN

An effective strategy has been developed for the photoredox-catalyzed decarboxylative addition of cyclic amino acids to both vinylogous amides and esters leading to uniquely substituted heterocycles. The additions take place exclusively trans to the substituent present on the dihydropyridone ring affording stereochemical control about the new carbon-carbon bond. These reactions are operationally simplistic and afford the desired products in good to excellent isolated yields.

9.
Magn Reson Chem ; 59(6): 628-640, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33486827

RESUMEN

Polyfluorinated and perfluorinated compounds in the environment are a growing health concern. 19 F-detected variants of commonly employed heteronuclear shift correlation experiments such as heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) are available; 19 F-detected experiments that employ carbon-carbon homonuclear coupling, in contrast, have never been reported. Herein, we report the measurement of the 1 JCC and n JCC coupling constants of a simple perfluorinated phthalonitrile and the first demonstration of a 19 F-detected 1,1-ADEQUATE experiment.

10.
Chem Res Toxicol ; 33(1): 191-201, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31566356

RESUMEN

MK-8666, a selective GPR40 agonist developed for the treatment of type 2 diabetes mellitus, was discontinued in phase I clinical trials due to liver safety concerns. To address whether chemically reactive metabolites played a causative role in the observed drug induced liver injury (DILI), we characterized the metabolism, covalent binding to proteins, and amino acid targets of MK-8666 in rat and human hepatocytes or cofactor-fortified liver microsomes. MK-8666 was primarily metabolized to an acyl glucuronide in hepatocytes of both species and a taurine conjugate in rat hepatocytes. Similar levels of covalent binding to proteins were observed in rat and human hepatocytes following incubation with [3H]MK-8666. After protease digestion of hepatocyte pellets, amino acid adducts A1, A2, and A3 were identified as transacylated products with lysine, serine, and cysteine residues, respectively. Amino acid adducts A4a-c were identified as glycation adducts resulting from rearrangement of MK-8666-1-O-ß-acyl glucuronide to ring-opened aldehydes which further condensed with lysine residues of proteins into imine adducts. Adducts A1-A3 and A4a-c were detected in rat and human liver microsomes fortified with UDPGA. Adducts A1-A3 were detected in rat and human liver microsomes fortified with CoA and ATP. Additionally, a trace amount of CoA thioester metabolite of MK-8666 and its transacylated GSH adduct were detected in human liver microsomes fortified with CoA, ATP, and GSH. Higher levels of covalent binding to protein were observed when [3H]MK-8666 was incubated in liver microsomes supplemented with CoA and ATP compared to UDPGA. Addition of GSH attenuated levels of CoA thioester-mediated covalent binding by 41-45%. Collectively, these studies indicated that metabolism of the -COOH moiety of MK-8666 can form a reactive acyl glucuronide and an acyl CoA thioester, which covalently modifies proteins and may represent one causative mechanism of the observed DILI.


Asunto(s)
Hepatocitos/metabolismo , Hipoglucemiantes/farmacología , Microsomas Hepáticos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Acilación , Aminoácidos/metabolismo , Animales , Ésteres/metabolismo , Glucurónidos/metabolismo , Humanos , Unión Proteica , Ratas
11.
Phys Chem Chem Phys ; 22(23): 13160-13170, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32495810

RESUMEN

Understanding the relationship between the structure and the physicochemical attributes of crystalline pharmaceuticals requires high-resolution molecular details. Solid-state nuclear magnetic resonance (ssNMR) spectroscopy is an indispensable tool for analyzing molecular structures, but often experiences challenges of low spectral resolution and sensitivity, particularly in the characterization of unlabeled pharmaceutical materials. Besides, the relatively long spin-lattice relaxation times in pharmaceutical crystals result in time-consuming data collections. In this study, we utilize ultrafast magic angle spinning (UF-MAS) of the sample at 60 and 110 kHz to enable proton and fluorine spectroscopies for probing the structural details of crystalline posaconazole. Paramagnetic relaxation enhancement (PRE), obtained by doping Cu(ii) ions into the crystalline lattice and coating on particle surface, is implemented to shorten the spin-lattice relaxation time for speeding up the ssNMR acquisition. Our results demonstrate a remarkably improved 1H and 19F resolution and sensitivity, which enables multi-dimensional 1H-1H and heteronuclear 1H-19F correlations. In combination with density functional theory (DFT) calculations of chemical shifts, molecular details of posaconazole are established in terms of 1H and 19F networks for identifying "head-to-tail" and "head-to-head" intermolecular packings, with presumably critical contacts that stabilize the crystalline structure. The PRE and UF-MAS techniques enable the high-resolution structure characterization of fluorinated drug molecules in pharmaceutical formulations at natural abundance.


Asunto(s)
Triazoles/análisis , Cobre/química , Teoría Funcional de la Densidad , Flúor/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Protones
12.
Magn Reson Chem ; 58(6): 594-606, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31916609

RESUMEN

Computer-assisted structure elucidation (CASE) is the class of expert systems that derives molecular structures primarily from one-dimensional and two-dimensional nuclear magnetic resonance data. Contemporary CASE systems, including Advanced Chemistry Development/Structure Elucidator (ACD/SE), consider cross-peaks in heteronuclear multiple bond coherence (HMBC) and correlation spectroscopy (COSY) spectra as two- or three-bond correlations by default. However, four and more bond correlations (nonstandard correlations [NSCs]) could be present in these spectra too. The indiscriminate addition of NSCs to the CASE computations is prohibitively expensive. To address this problem, the ACD/SE program performs a logical analysis of observed correlations and determines the minimum number of NSCs. Guided by this information, a more efficient fuzzy structure generation (FSG) algorithm is subsequently applied. Until now, the FSG algorithm was utilized without any verification of the reliability of found NSCs. Here, we report a verification method for NSCs based on the relationship between NSCs and J-couplings computed with high accuracy density functional theory (DFT) methods. We used the example of strychnine to show that 41 (32%) of 8-Hz HMBC cross-peaks were NSCs and were consistent with 4-6 JCH couplings greater than 0.3 Hz. This cutoff value was largely confirmed by the analysis of NSCs in 11 real-world natural products elucidated by ACD/SE. Additionally, utilizing the example of the CASE study of cleospinol A, we showed that the DFT-computed J-couplings of NSCs can distinctively differentiate the correct structure among six proposed isomers. The proposed approach of NSC verification should further improve the robustness of CASE analysis and can help reveal potential problems with reported experimental data.

13.
J Org Chem ; 84(16): 10024-10031, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31283876

RESUMEN

Retro-Brook rearrangements refer to the intramolecular migration of a silyl group from oxygen to carbon. In this study, we report a novel propargylic retro-Brook rearrangement observed in terminal alkynes bearing a silyl ether moiety. Retro-Brook rearrangements involving [1,2]-, [1,4]-, and [1,5]-migrations are described, affording propargylsilanes in reasonable yield. The reaction mechanism was investigated experimentally by deuterium quenching and rationalized by density functional theory calculations. The terminal alkyne and the subsequent propargyl/allenyl dianion were shown to be crucial for the reaction favoring the retro-Brook rearrangement product over the Brook rearrangement. The second deprotonation at the propargylic position was determined to be the rate-limiting step. In addition, a gas-phase Brook-type rearrangement of the propargylsilanes was observed under GC-MS conditions. This observation was also further confirmed by DFT calculations.

14.
Pharm Res ; 36(10): 151, 2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31451949

RESUMEN

PURPOSE: In this study we evaluated the utility of in-vitro screening tools for predicting the in-vivo behavior of six cyclic peptides with different solubility and permeability properties (BCS class II and III), intended for oral delivery in presence of permeation enhancer Labrasol. METHODS: An in vitro flux assay was used to assess peptide permeation across a biomimetic, lipid-based membrane and in vivo studies in rats were used to determine oral peptide bioavailability in the presence of Labrasol. RESULTS: The in vitro flux was significantly increased for BCS class III peptides, while it significantly decreased or remained unchanged for BCS class II peptides with increasing Labrasol concentrations. The different flux responses were attributed to the combination of reduced effective free peptide concentration and increased membrane permeability in the presence of Labrasol. In vivo studies in male Wistar-Hans rats indicated improved oral bioavailability at different extents for all peptides in presence of Labrasol. On comparing the in vitro and in vivo data, a potential direct correlation for BCS class III peptides was seen but not for BCS class II peptides, due to lower free concentrations of peptides in this class. CONCLUSION: This study assessed the utility of in vitro screening tools for selecting peptides and permeation excipients early in drug product development. Graphical Abstract Graphical Abstract and Figure 1 contains small text.Graphical Abstract text is made larger. The Figure 1 text cannot be made larger.


Asunto(s)
Péptidos Cíclicos/administración & dosificación , Péptidos Cíclicos/farmacocinética , Administración Oral , Animales , Disponibilidad Biológica , Permeabilidad de la Membrana Celular , Química Farmacéutica , Excipientes/química , Glicéridos/química , Membrana Dobles de Lípidos/metabolismo , Masculino , Modelos Biológicos , Péptidos Cíclicos/química , Ratas Wistar , Solubilidad
15.
J Am Chem Soc ; 140(22): 6797-6800, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29762027

RESUMEN

Targeting tryptophan is a promising strategy to achieve high levels of selectivity for peptide or protein modification. A chemoselective peptide modification method via photocatalytic tryptophan ß-position conjugation has been discovered. This transformation has good substrate scope for both peptide and Michael acceptor, and has good chemoselectivity versus other amino acid residues. The endogenous peptides, glucagon and GLP-1 amide, were both successfully conjugated at the tryptophan ß-position. Insulin was studied as a nontryptophan control molecule, resulting in exclusive B-chain C-terminal-selective decarboxylative conjugation. This transformation provides a novel approach toward peptide modification to support the discovery of new therapeutic peptides, protein labeling and bioconjugation.


Asunto(s)
Péptidos/química , Procesos Fotoquímicos , Proteínas/química , Triptófano/química , Catálisis/efectos de la radiación , Conformación Molecular
16.
Bioorg Med Chem Lett ; 28(11): 2029-2034, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29748051

RESUMEN

Compound 5 (SCH772984) was identified as a potent inhibitor of ERK1/2 with excellent selectivity against a panel of kinases (0/231 kinases tested @ 100 nM) and good cell proliferation activity, but suffered from poor PK (rat AUC PK @10 mpk = 0 µM h; F% = 0) which precluded further development. In an effort to identify novel ERK inhibitors with improved PK properties with respect to 5, a systematic exploration of sterics and composition at the 3-position of the pyrrolidine led to the discovery of a novel 3(S)-thiomethyl pyrrolidine analog 28 with vastly improved PK (rat AUC PK @10 mpk = 26 µM h; F% = 70).


Asunto(s)
Antineoplásicos/farmacología , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Pirrolidinas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirrolidinas/síntesis química , Pirrolidinas/química , Ratas , Relación Estructura-Actividad , Células Tumorales Cultivadas
17.
Magn Reson Chem ; 56(6): 493-504, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28833470

RESUMEN

Computer-assisted structure elucidation (CASE) is composed of two steps: (a) generation of all possible structural isomers for a given molecular formula and 2D NMR data (COSY, HSQC, and HMBC) and (b) selection of the correct isomer based on empirical chemical shift predictions. This method has been very successful in solving structural problems of small organic molecules and natural products. However, CASE applications are generally limited to structural isomer problems and can sometimes be inconclusive due to insufficient accuracy of empirical shift predictions. Here, we report a synergistic combination of a CASE algorithm and density functional theory calculations that broadens the range of amenable structural problems to encompass proton-deficient molecules, molecules with heavy elements (e.g., halogens), conformationally flexible molecules, and configurational isomers.

18.
Bioorg Med Chem Lett ; 27(23): 5344-5348, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29110986

RESUMEN

New synthetic methods were developed for the preparation of 2,3,6-trisubstituted 1-oxo-1,2-dihydroisoquinolines as CRTh2 antagonists. The isoquinolinone core could be constructed before the introduction of substitution groups or synthesized through a catalytic intramolecular cyclization reaction with desired substitution groups properly installed. These synthetic strategies have helped to accelerate the SAR development of this series, and potent lead compounds were identified in both the CRTh2 receptor binding assay and the CD11b biomarker assay.


Asunto(s)
Isoquinolinas/farmacología , Receptores Inmunológicos/antagonistas & inhibidores , Receptores de Prostaglandina/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Humanos , Isoquinolinas/síntesis química , Isoquinolinas/química , Estructura Molecular , Relación Estructura-Actividad
19.
Bioorg Med Chem Lett ; 27(23): 5349-5352, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29056248

RESUMEN

(2'R)-Ethynyl uridine 3, and its (2'S)-diastereomer 10, are synthesised in a divergent fashion from the inexpensive parent nucleoside. Both nucleoside analogues are obtained from a total of 5 simple synthetic steps and 3 trivial column chromatography purifications. To evaluate their effectiveness against HCV NS5B polymerase, the nucleosides were converted to their respective 5'-O-triphosphates. Subsequently, this lead to the discovery of the 2'-ß-ethynyl 18 and -propynyl 20 nucleotides having significantly improved potency over Sofosbuvir triphosphate 24.


Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Nucleósidos/farmacología , Uridina/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Nucleósidos/síntesis química , Nucleósidos/química , Relación Estructura-Actividad , Uridina/análogos & derivados , Uridina/química
20.
J Org Chem ; 81(2): 485-501, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26636717

RESUMEN

Detailed experimental and theoretical quantum mechanical analysis of the atropisomerization mechanism of a complex, bridged biaryl molecule with imbedded biphenyl, amine, and lactam moieties, 7,8-diallyl-5-benzyl-7,8-dihydrodibenzo[e,g][1,4]diazocin-6(5H)-one (1), was undertaken. Experimental Gibbs free activation energy, activation enthalpy, and activation entropy were established by temperature-dependent kinetic NMR experiments. Theoretical analysis utilized density functional theory (DFT) calculations at the B3LYP/6-31G(d) level of theory. Twelve energy minima and 17 transition states associated with five different atropisomer interconversion pathways were found by the combination of DFT calculated two-dimensional potential energy surfaces (2D PES) and the quadratic synchronous transit-guided (QST2) method. Among the five possible atropisomerization pathways, the lowest Gibbs free activation energy 25.8 kcal/mol was in close agreement with the experimentally determined value of 26.8 kcal/mol. Theoretical activation entropies and enthalpies were also consistent with experimental data. Geometrical and vibrational analysis of transition states and metastable intermediates suggested the mechanism of atropisomer interconversion of 1 as a rotation of the eclipsed endocyclic coordinate in a clockwise or counterclockwise direction along the ring. Puckering ability at least in one of the segments of the ring appears to be one of the most critical factors defining the height of atropisomerization barrier.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA