Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37987559

RESUMEN

Even in the genomics era, the phylogeny of Neotropical small felids comprised in the genus Leopardus remains contentious. We used whole-genome resequencing data to construct a time-calibrated consensus phylogeny of this group, quantify phylogenomic discordance, test for interspecies introgression, and assess patterns of genetic diversity and demographic history. We infer that the Leopardus radiation started in the Early Pliocene as an initial speciation burst, followed by another in its subgenus Oncifelis during the Early Pleistocene. Our findings challenge the long-held notion that ocelot (Leopardus pardalis) and margay (L. wiedii) are sister species and instead indicate that margay is most closely related to the enigmatic Andean cat (L. jacobita), whose whole-genome data are reported here for the first time. In addition, we found that the newly sampled Andean tiger cat (L. tigrinus pardinoides) population from Colombia associates closely with Central American tiger cats (L. tigrinus oncilla). Genealogical discordance was largely attributable to incomplete lineage sorting, yet was augmented by strong gene flow between ocelot and the ancestral branch of Oncifelis, as well as between Geoffroy's cat (L. geoffroyi) and southern tiger cat (L. guttulus). Contrasting demographic trajectories have led to disparate levels of current genomic diversity, with a nearly tenfold difference in heterozygosity between Andean cat and ocelot, spanning the entire range of variability found in extant felids. Our analyses improved our understanding of the speciation history and diversity patterns in this felid radiation, and highlight the benefits to phylogenomic inference of embracing the many heterogeneous signals scattered across the genome.


Asunto(s)
Felidae , Tigres , Animales , Filogenia , Felidae/genética , Evolución Biológica , Flujo Génico
2.
Animals (Basel) ; 13(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37893899

RESUMEN

The New World Vultures (Cathartidae) include seven species of obligate scavengers that, despite their ecological relevance, present critical information gaps around their evolutionary history and conservation. Insights into their phylogenetic relationships in recent years has enabled the addressing of such information gaps through approaches based on phylogeny. We reconstructed the ancestral area in America of the current species using two regionalization schemes and methods: Biogeography with Bayesian Evolutionary Analysis (BioGeoBears) and Bayesian Binary Model-Monte Carlo Markov Chains (BBM-MCMC). Then, we identified the priority species and areas for conservation by means of the Evolutionary Distinctiveness index (ED), as a proxy of the uniqueness of species according to phylogeny, and the Global Endangerment index (GE), mapping phylogenetic diversity. We found that the ancestral area of New World Vultures in America corresponds to South America, with dispersal processes that led to a recolonization of North America by Coragyps atratus, Gymnogyps californianus and Cathartes aura. We identified the Black Vulture, G. californianus and Vultur gryphus as priority species based on ED and "Evolutionary Distinct Globally Endangered" (EDGE) indexes, and the lowlands of Amazon River basin and the Orinoco basin and some tributaries areas of the Guiana Shield were identified as the priority areas when mapping the phylogenetic diversity. This study highlights the importance of filling knowledge gaps of species of conservation concern through the integration of evolutionary and ecological information and tools and, thus, developing adequate strategies to enhance the preservation of these species in the face of the current loss of biodiversity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA