Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Monit Assess ; 195(6): 662, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169998

RESUMEN

Snake fungal disease, caused by Ophidiomyces ophidiicola, is recognized as a potential concern for North American snakes. We tested skin swabs from Northern Pine Snakes (Pituophis melanoleucus melanoleucus) in the New Jersey pinelands for the presence of O. ophidiicola before emergence from hibernation. We used qPCR to test the collected swabs for the presence of O. ophidiicola, then determined pathogen prevalence as a function of sampling year, sampling location (skin lesion, healthy ventral skin, healthy head skin) sex, and age. There were no temporal trends in O. ophidiicola detection percentages on snakes, which varied from 58 to 83% in different years. Ophidiomyces ophidiicola detection on snakes was highest in swabs of skin lesions (71%) and lowest in head swabs (29%). Males had higher prevalence than females (82% versus 62%). The fungus was not detected in hatchling snakes (age 0) in the fall, but 75% of juveniles tested positive at the end of hibernation (age 1 year). We also screened hibernacula soil samples for the presence of O. ophidiicola. Where snakes hibernated, 69% of soil samples were positive for O. ophidiicola, and 85% of snakes lying on positive soil samples also tested positive for the pathogen. Although a high proportion of snakes (73%) tested positive for O. ophidiicola during our 4-year study, the snakes appeared healthy except for small skin lesions. We conclude that O. ophidiicola prevalence is high on hibernating Northern Pine Snakes and in the hibernacula soil, with a strong association between snakes and positive adjacent soil. This is the first demonstration that snakes likely become infected during hibernation.


Asunto(s)
Monitoreo del Ambiente , Micosis , Masculino , Animales , Femenino , New Jersey/epidemiología , Prevalencia , Serpientes/microbiología , Micosis/microbiología , Micosis/patología
2.
Conserv Biol ; 36(6): e13939, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35603473

RESUMEN

Reptiles are increasingly of conservation concern due to their susceptibility to habitat loss, emerging disease, and harvest in the wildlife trade. However, reptile populations are often difficult to monitor given the frequency of crypsis in their life history. This difficulty has left uncertain the conservation status of many species and the efficacy of conservation actions unknown. Environmental DNA (eDNA) surveys consistently elevate the detection rate of species they are designed to monitor, and while their use is promising for terrestrial reptile conservation, successes in developing such surveys have been sparse. We tested the degree to which inclusion of surface and soil eDNA sampling into conventional artificial-cover methods elevates the detection probability of a small, cryptic terrestrial lizard, Scincella lateralis. The eDNA sampling of cover object surfaces with paint rollers elevated per sample detection probabilities for this species 4-16 times compared with visual surveys alone. We readily detected S. lateralis eDNA under cover objects up to 2 weeks after the last visual detection, and at some cover objects where no S. lateralis were visually observed in prior months. With sufficient sampling intensity, eDNA testing of soil under cover objects produced comparable per sample detection probabilities as roller surface methods. Our results suggest that combining eDNA and cover object methods can considerably increase the detection power of reptile monitoring programs, allowing more accurate estimates of population size, detection of temporal and spatial changes in habitat use, and tracking success of restoration efforts. Further research into the deposition and decay rates of reptile eDNA under cover objects, as well as tailored protocols for different species and habitats, is needed to bring the technique into widespread use.


El interés por la conservación de los reptiles es cada vez mayor debido a su susceptibilidad ante la pérdida del hábitat, enfermedades emergentes y la captura para el mercado de fauna. Sin embargo, las poblaciones de reptiles son difíciles de monitorear por lo frecuente que es la cripsis en sus historias de vida. Esta dificultad deja incierto el estado de conservación de muchas especies y desconocida la eficacia de las acciones de conservación. Los censos de ADN ambiental (DNAa) elevan sistemáticamente la tasa de detección de las especies que monitorean, y aunque su uso es prometedor para la conservación de los reptiles terrestres, han sido escasos los éxitos en el desarrollo de dichos censos. Analizamos el grado al que la inclusión del muestreo de DNAa superficial y del suelo a los métodos convencionales de cobertura artificial eleva la probabilidad de detección de una pequeña lagartija terrestre críptica: Scincella lateralis. El muestreo de DNAa de las superficies con cobertura de objetos con rodillos de pintura elevó las probabilidades de detección por muestra para esta especie 4-16 veces más que los censos visuales. Detectamos fácilmente el DNAa de S. lateralis bajo los objetos de cubierta hasta dos semanas después de la última detección visual y en algunos objetos de cubierta en donde no se había observado en los meses previos a S. lateralis. Con suficiente intensidad de muestreo, el análisis de DNAa del suelo bajo objetos de cubierta produjo probabilidades de detección por muestra comparables como métodos de rodillo superficial. Nuestros resultados sugieren que la combinación del DNAa y los métodos de objetos de cobertura puede incrementar considerablemente el poder de detección de los programas de monitoreo de reptiles, lo que permite estimaciones más precisas del tamaño poblacional, detección de los cambios espaciales y temporales en el uso de hábitat y el éxito de rastreo de los esfuerzos de restauración. Además, se necesita la investigación sobre las tasas de depósito y descomposición del DNAa de reptiles bajo objetos de cubierta, así como los protocolos hechos para diferentes especies y hábitats, para que la técnica entre al uso difundido.


Asunto(s)
ADN Ambiental , Animales , Suelo , Conservación de los Recursos Naturales , Reptiles/genética , Ecosistema , Monitoreo del Ambiente/métodos
3.
J Fungi (Basel) ; 10(2)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38392797

RESUMEN

Ophidiomyces ophidiicola, the fungus causing snake fungal disease (SFD), has been identified in northern pine snakes (Pituophis melanoleucus) in New Jersey. In this paper, we (1) review the positivity rate of SFD on different locations on snakes' bodies, (2) determine the relationship between the sores and quantitative polymerase chain reaction (qPCR) positivity rates, and (3) explore the relationship between the investigators' clinical evaluation of the severity of sores, their evaluation of the likelihood of the sores being positive, and the qPCR positivity of SFD for the sores. Swabbing the sores was more effective at determining whether the snakes tested positive for O. ophidiicola than ventrum swabbing alone. The perception of the severity of the sores did not relate to qPCR positivity for O. ophidiicola. We suggest that the assessment of the rate of SFD among snakes in the wild needs to include the sampling of snakes with no clinical signs, as well as those with sores, and the swabbing of all the sores collectively. Clear terminology for sores, the identification of clinical signs of SFD, and distinguishing the rates of O. ophidiicola by PCR testing should be adopted. Overall, the pine snakes exhibited a higher rate of sores and positivity of O. ophidiicola swabs by PCR testing compared to the other snakes.

4.
Sci Total Environ ; 851(Pt 1): 158205, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36028019

RESUMEN

Aquatic ecosystems convey complex contaminant mixtures from anthropogenic pollution on a global scale. Point (e.g., municipal wastewater) and nonpoint sources (e.g., stormwater runoff) are both drivers of contaminant mixtures in aquatic habitats. The objectives of this study were to identify the contaminant mixtures present in surface waters impacted by both point and nonpoint sources, to determine if aquatic biota (amphibian and fish) health effects (testicular oocytes and parasites) occurred at these sites, and to understand if differences in biological and chemical measures existed between point (on-stream) and nonpoint sources (off-stream). To accomplish this, water chemistry, fishes, and frogs were collected from 21 sites in the New Jersey Pinelands, United States. Off-stream sites consisted of 3 reference and 10 degraded wetlands. On-stream sites consisted of two reference lakes and six degraded streams/lakes (four sites above and two sites below wastewater outfalls). Surface water was collected four times at each site and analyzed for 133 organic and inorganic contaminants. One native and five non-native fish species were collected from streams/lakes and native green frogs from wetlands (ponds and stormwater basins). Limited differences in contaminant concentrations were observed in reference and degraded wetlands but for streams/lakes, results indicated that landscape alteration, (upland agricultural and developed land) was the primary driver of contaminant concentrations rather than municipal wastewater. Incidence of estrogenic endocrine disruption (intersex) was species dependent with the highest prevalence observed in largemouth bass and black crappie and the lowest prevalence observed in green frogs and tessellated darters. Parasite prevalence was site and species dependent. Prevalence of eye parasites increased with increasing concentrations of industrial, mycotoxin, and cumulative inorganic contaminants. These findings are critical to support the conservation, protection, and management of a wide range of aquatic species in the Pinelands and elsewhere as habitat loss, alteration, and fragmentation increase with increasing development.


Asunto(s)
Lubina , Micotoxinas , Contaminantes Químicos del Agua , Animales , Lubina/metabolismo , Ecosistema , Monitoreo del Ambiente , Micotoxinas/metabolismo , New Jersey , Estados Unidos , Aguas Residuales , Agua/metabolismo , Contaminantes Químicos del Agua/análisis
5.
J Fungi (Basel) ; 7(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201162

RESUMEN

Wildlife diseases pose an ever-growing threat to global biodiversity. Understanding how wildlife pathogens are distributed in the environment and the ability of pathogens to form environmental reservoirs is critical to understanding and predicting disease dynamics within host populations. Snake fungal disease (SFD) is an emerging conservation threat to North American snake populations. The causative agent, Ophidiomyces ophidiicola (Oo), is detectable in environmentally derived soils. However, little is known about the distribution of Oo in the environment and the persistence and growth of Oo in soils. Here, we use quantitative PCR to detect Oo in soil samples collected from five snake dens. We compare the detection rates between soils collected from within underground snake hibernacula and associated, adjacent topsoil samples. Additionally, we used microcosm growth assays to assess the growth of Oo in soils and investigate whether the detection and growth of Oo are related to abiotic parameters and microbial communities of soil samples. We found that Oo is significantly more likely to be detected in hibernaculum soils compared to topsoils. We also found that Oo was capable of growth in sterile soil, but no growth occurred in soils with an active microbial community. A number of fungal genera were more abundant in soils that did not permit growth of Oo, versus those that did. Our results suggest that soils may display a high degree of both general and specific suppression of Oo in the environment. Harnessing environmental suppression presents opportunities to mitigate the impacts of SFD in wild snake populations.

6.
PLoS One ; 13(11): e0205805, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30412587

RESUMEN

Cryptic species are a challenge for systematics, but their elucidation also may leave critical information gaps about the distribution, conservation status, and behavior of affected species. We use the leopard frogs of the eastern U.S. as a case study of this issue. We refined the known range of the recently described Rana kauffeldi, the Atlantic Coast Leopard Frog, relative to the region's two other leopard frog species, conducted assessments of conservation status, and improved methods for separating the three species using morphological field characters. We conducted over 2,000 call and visual surveys and took photographs of and tissue samples from hundreds of frogs. Genetic analysis supported a three-species taxonomy and provided determinations for 220 individual photographed frogs. Rana kauffeldi was confirmed in eight U.S. states, from North Carolina to southern Connecticut, hewing closely to the Atlantic Coastal Plain. It can be reliably differentiated in life from R. pipiens, and from R. sphenocephala 90% of the time, based on such characters as the femoral reticulum patterning, dorsal spot size and number, and presence of a snout spot. However, the only diagnostic character separating R. kauffeldi from R. sphenocephala remains the breeding call described in 2014. Based on our field study, museum specimens, and prior survey data, we suggest that R. kauffeldi has declined substantially in the northern part of its range, but is more secure in the core of its range. We also report, for the first time, apparent extirpations of R. pipiens from the southeastern portion of its range, previously overlooked because of confusion with R. kauffeldi. We conclude with a generalized ecological research agenda for cryptic species. For R. kauffeldi, needs include descriptions of earlier life stages, studies of niche partitioning with sympatric congeners and the potential for hybridization, and identification of conservation actions to prevent further declines.


Asunto(s)
Conservación de los Recursos Naturales , Ecología , Rana pipiens/fisiología , Animales , Connecticut , North Carolina , Rana pipiens/clasificación
7.
Environ Manage ; 31(6): 696-708, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-14565691

RESUMEN

In 1979, the Pinelands Commission was established as a regional land-use planning and regulatory agency charged with the implementation of a Comprehensive Management Plan (CMP) for the Pinelands National Reserve (New Jersey, USA). The CMP was created to balance land preservation and development interests in the Reserve. Because water-quality degradation from developed and agricultural landscapes is associated with changes in the composition of biological communities, monitoring landscape changes provides one of the most direct measures of the impact of land-use policies on the Pinelands ecosystem. In this study, we prepared detailed, land-cover maps within randomly selected aerial-photograph plots for a major watershed in the Reserve. We used these land-cover maps to quantify changes in landscape composition and structure (i.e., patch size, patch area, and number of patches) and characterize land-cover transitions in the basin between 1979 and 1991. Because the study period represented the first 12 years of the regional-planning effort in the Reserve, we evaluated the relationship between land-cover transitions and Commission management-area designations which permit different land-use intensities. Although the landscape composition was similar in 1979 and 1991, we found an increase in the total area and number of developed-land, managed-grassland, and barren-land patches. An increase in the number of patches and a decrease in the total area and median and third-quartile patch sizes for forest land and for all patches regardless of cover type indicated that fragmentation of forest land and the landscape as a whole occurred during the study period. The major land-cover transitions that occurred during the period were the loss of forest land to development and associated cover types and the conversion of one agricultural type to another. Overall, land-cover transitions during the period were found to be consistent with the Commission management-area designations, which indicated that the regional-planning effort has been successful in directing human activities to appropriate areas of the basin.


Asunto(s)
Conservación de los Recursos Naturales , Monitoreo del Ambiente , Abastecimiento de Agua , Agricultura , Ecosistema , New Jersey , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA