Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Genet ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170232

RESUMEN

Variants which disrupt splicing are a frequent cause of rare disease that have been under-ascertained clinically. Accurate and efficient methods to predict a variant's impact on splicing are needed to interpret the growing number of variants of unknown significance (VUS) identified by exome and genome sequencing. Here, we present the results of the CAGI6 Splicing VUS challenge, which invited predictions of the splicing impact of 56 variants ascertained clinically and functionally validated to determine splicing impact. The performance of 12 prediction methods, along with SpliceAI and CADD, was compared on the 56 functionally validated variants. The maximum accuracy achieved was 82% from two different approaches, one weighting SpliceAI scores by minor allele frequency, and one applying the recently published Splicing Prediction Pipeline (SPiP). SPiP performed optimally in terms of sensitivity, while an ensemble method combining multiple prediction tools and information from databases exceeded all others for specificity. Several challenge methods equalled or exceeded the performance of SpliceAI, with ultimate choice of prediction method likely to depend on experimental or clinical aims. One quarter of the variants were incorrectly predicted by at least 50% of the methods, highlighting the need for further improvements to splicing prediction methods for successful clinical application.

2.
Clin Genet ; 103(2): 214-218, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36148635

RESUMEN

Renal Fanconi syndrome (RFS) is a generalised disorder of the proximal convoluted tubule. Many genes have been associated with RFS including those that cause systemic disorders such as cystinosis, as well as isolated RFS. We discuss the case of a 10-year-old female who presented with leg pain and raised creatinine on a screening blood test. Her mother has RFS and required a kidney transplant in her thirties. Further investigations confirmed RFS in the daughter. Exome sequencing was performed on the affected mother, child, and unaffected father. We identified a novel variant in GATM; c.965G>C p.(Arg322Pro) segregating dominantly in the mother and daughter. We validated our finding with molecular dynamics simulations and demonstrated a dynamic signature that differentiates our variant and two previously identified pathogenic variants in GATM from wildtype. Genetic testing has uncovered a novel pathogenic variant that predicts progression to end stage kidney failure and has important implications for family planning and cascade testing. We recommend that GATM is screened for in children presenting with RFS, in addition to adults, particularly with kidney failure, who may have had previous negative gene testing.


Asunto(s)
Síndrome de Fanconi , Fallo Renal Crónico , Niño , Adulto , Femenino , Humanos , Síndrome de Fanconi/diagnóstico , Síndrome de Fanconi/genética , Síndrome de Fanconi/complicaciones , Fallo Renal Crónico/genética , Fallo Renal Crónico/complicaciones , Pruebas Genéticas , Causalidad
3.
Cytogenet Genome Res ; 162(11-12): 587-598, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36927524

RESUMEN

Transcription of SHOX is dependent upon the interaction of the gene with a complex array of flanking regulatory elements. Duplications that contain flanking regulatory elements but not the SHOX gene have been reported in individuals with SHOX haploinsufficiency syndromes, suggesting that alterations to the physical organisation or genomic architecture may affect SHOX transcription. Individuals with tall stature and an additional X or Y chromosome have an extra copy of both the SHOX gene and the entire SHOX regulatory region, so all three copies of SHOX can be expressed fully. However, for a duplication of the SHOX gene that does not include all of the flanking regulatory elements, the potential effect on SHOX expression is difficult to predict. We present nine unpublished individuals with a SHOX whole gene duplication in whom the duplication contains variable amounts of the SHOX regulatory region, and we review 29 similar cases from the literature where phenotypic data were clearly stated. While tall stature was present in a proportion of these cases, we present evidence that SHOX whole gene duplications can also result in a phenotype more typically associated with SHOX haploinsufficiency and are significantly overrepresented in Leri-Weill dyschondrosteosis and idiopathic short stature probands compared to population controls. Although similar-looking duplications do not always produce a consistent phenotype, there may be potential genotype-phenotype correlations regarding the duplication size, regulatory element content, and the breakpoint proximity to the SHOX gene. Although ClinGen does not currently consider SHOX whole gene duplications to be clinically significant, the ClinGen triplosensitivity score does not take into account the context of the duplication, and more is now known about SHOX duplications and the role of flanking elements in SHOX regulation. The evidence presented here suggests that these duplications should not be discounted without considering the extent of the duplication and the patient phenotype, and should be included in diagnostic laboratory reports as variants of uncertain significance. Given the uncertain pathogenicity of these duplications, any reports should encourage the exclusion of all other causes of short stature where possible.

4.
Am J Med Genet A ; 185(4): 1228-1235, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33439541

RESUMEN

Spondylometaphyseal dysplasia with cerebral hypomyelination (SMD-H) is a very rare but distinctive phenotype, unusually combining spondylometaphyseal dysplasia with hypomyelinating leukodystrophy. Recently, SMD-H has been associated with variants confined to a specific intra-genic locus involving Exon 7, suggesting that AIFM1 plays an important role in bone development and metabolism as well as cerebral myelination. Here we describe two further affected boys, one with a novel intronic variant associated with skipping of Exon 7 of AIFM1 and the other a synonymous variant within Exon 7 of AIFM1. We describe their clinical course and radiological and genetic findings, providing further insight into the natural history of this condition.


Asunto(s)
Factor Inductor de la Apoptosis/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Predisposición Genética a la Enfermedad , Malformaciones del Sistema Nervioso/genética , Osteocondrodisplasias/genética , Desarrollo Óseo/genética , Exones , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico por imagen , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Masculino , Mutación/genética , Malformaciones del Sistema Nervioso/diagnóstico , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Malformaciones del Sistema Nervioso/patología , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/diagnóstico por imagen , Osteocondrodisplasias/patología , Linaje
5.
Cytogenet Genome Res ; 160(4): 185-192, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32316019

RESUMEN

A phenotype is emerging for the proximal pair of G-dark bands in 11q (11q14.1 and q14.3) but not yet for the distal pair (11q22.1 and q22.3). A mother and daughter with the same directly transmitted 12.3-Mb interstitial deletion of 11q21q22.3 (GRCh37: 93,551,765-105,817,723) both had initial feeding difficulties and failure to thrive, speech delay, learning difficulties, and mild dysmorphism. Among 17 patients with overlapping deletions, developmental or speech delay, dysmorphism, hypotonia, intellectual disability or learning difficulties, short stature, and coloboma were each found in 2 or more. These results may provide the basis for a consistent phenotype for this region. Among the 53 deleted and additional breakpoint genes, CNTN5, YAP1, and GRI4 were the most likely candidates. Non-penetrance of haploinsufficient genes and dosage compensation among related genes may account for the normal cognition in the mother and variable phenotypes that can extend into the normal range.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 11/genética , Anomalías Múltiples/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Contactinas/genética , Femenino , Humanos , Fenotipo , Receptores AMPA/genética , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
6.
Genet Med ; 22(6): 1005-1014, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32123317

RESUMEN

PURPOSE: Diagnosis of genetic disorders is hampered by large numbers of variants of uncertain significance (VUSs) identified through next-generation sequencing. Many such variants may disrupt normal RNA splicing. We examined effects on splicing of a large cohort of clinically identified variants and compared performance of bioinformatic splicing prediction tools commonly used in diagnostic laboratories. METHODS: Two hundred fifty-seven variants (coding and noncoding) were referred for analysis across three laboratories. Blood RNA samples underwent targeted reverse transcription polymerase chain reaction (RT-PCR) analysis with Sanger sequencing of PCR products and agarose gel electrophoresis. Seventeen samples also underwent transcriptome-wide RNA sequencing with targeted splicing analysis based on Sashimi plot visualization. Bioinformatic splicing predictions were obtained using Alamut, HSF 3.1, and SpliceAI software. RESULTS: Eighty-five variants (33%) were associated with abnormal splicing. The most frequent abnormality was upstream exon skipping (39/85 variants), which was most often associated with splice donor region variants. SpliceAI had greatest accuracy in predicting splicing abnormalities (0.91) and outperformed other tools in sensitivity and specificity. CONCLUSION: Splicing analysis of blood RNA identifies diagnostically important splicing abnormalities and clarifies functional effects of a significant proportion of VUSs. Bioinformatic predictions are improving but still make significant errors. RNA analysis should therefore be routinely considered in genetic disease diagnostics.


Asunto(s)
Empalme del ARN , ARN , Biología Computacional , Exones , Humanos , Mutación , ARN/genética
8.
Am J Med Genet A ; 182(11): 2508-2520, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32827181

RESUMEN

Pathogenic variants within the CREBBP and EP300 genes account for the majority of individuals with Rubinstein-Taybi syndrome (RSTS). Data are presented from a large cohort of 395 individuals referred for diagnostic testing of CREBBP, and of the 19 CREBBP missense variants classified as likely pathogenic in this study, 17 were within the histone acetyltransferase (HAT) domain, providing evidence that this domain is critical to the normal function of the CREBBP protein (CBP). The data presented here, combined with other published results, suggest that the presence of a missense variant within the CBP HAT domain can be considered as moderate evidence of pathogenicity in the context of official variant interpretation guidelines. Within our study cohort, 129 had a pathogenic or likely pathogenic CREBBP variant and 5 had a variant of uncertain significance (VUS) which warranted familial studies. 147 of the remaining probands were also screened for EP300 and a further 16 pathogenic or likely pathogenic variants were identified, plus one VUS. Therefore, this analysis has provided a molecular diagnosis in at least 145 individuals with RSTS (37%) and identified a wide range of variants (n = 133) of which 103 were novel.


Asunto(s)
Proteína de Unión a CREB/genética , Proteína p300 Asociada a E1A/genética , Histona Acetiltransferasas/genética , Mutación Missense , Síndrome de Rubinstein-Taybi/genética , Proteína de Unión a CREB/química , Estudios de Cohortes , Estudios de Asociación Genética , Variación Genética , Humanos , Fenotipo , Dominios Proteicos , Síndrome de Rubinstein-Taybi/diagnóstico , Análisis de Secuencia de ADN
9.
Hum Genet ; 138(8-9): 1027-1042, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29464339

RESUMEN

GJA8 encodes connexin 50 (Cx50), a transmembrane protein involved in the formation of lens gap junctions. GJA8 mutations have been linked to early onset cataracts in humans and animal models. In mice, missense mutations and homozygous Gja8 deletions lead to smaller lenses and microphthalmia in addition to cataract, suggesting that Gja8 may play a role in both lens development and ocular growth. Following screening of GJA8 in a cohort of 426 individuals with severe congenital eye anomalies, primarily anophthalmia, microphthalmia and coloboma, we identified four known [p.(Thr39Arg), p.(Trp45Leu), p.(Asp51Asn), and p.(Gly94Arg)] and two novel [p.(Phe70Leu) and p.(Val97Gly)] likely pathogenic variants in seven families. Five of these co-segregated with cataracts and microphthalmia, whereas the variant p.(Gly94Arg) was identified in an individual with congenital aphakia, sclerocornea, microphthalmia and coloboma. Four missense variants of unknown or unlikely clinical significance were also identified. Furthermore, the screening of GJA8 structural variants in a subgroup of 188 individuals identified heterozygous 1q21 microdeletions in five families with coloboma and other ocular and/or extraocular findings. However, the exact genotype-phenotype correlation of these structural variants remains to be established. Our data expand the spectrum of GJA8 variants and associated phenotypes, confirming the importance of this gene in early eye development.


Asunto(s)
Conexinas/genética , Anomalías del Ojo/genética , Mutación Missense/genética , Catarata/genética , Estudios de Cohortes , Proteínas del Ojo/genética , Femenino , Uniones Comunicantes/genética , Estudios de Asociación Genética/métodos , Heterocigoto , Humanos , Cristalino/patología , Masculino , Linaje , Fenotipo
10.
Am J Med Genet A ; 176(2): 319-329, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29194955

RESUMEN

The direct transmission of microscopically visible unbalanced chromosome abnormalities (UBCAs) is rare and usually has phenotypic consequences. Here we report four families in which a normal phenotype was initially found in one or more family members. Each UBCA was interpreted with regard to overlapping examples and factors previously associated with transmitted imbalances including incidental ascertainment, low gene density, benign copy number variation (CNV) content, and gene relatedness. A 4.56 Mb deletion of 8p23.1-p23.2 was thought to be causal in the affected proband but showed incomplete penetrance in her mother and sibling (Family 1). Incomplete penetrance was also associated with a 10.88 Mb duplication of 13q21.31-q22.1 (Family 3) and dosage insensitivity with a 17.6 Mb deletion of 22pter-q11.21 (Family 4) that were both ascertained at prenatal diagnosis and each found in 4 unaffected family members. The 22pter-q11.21 deletion is part of a region with high benign CNV content and supports the mapping of cat eye syndrome to a 600 kb interval of 22q11.1-q11.21. Low gene densities of less than 2.0 genes/Mb were found in each of these three families but only after segmentally duplicated genes were excluded from the deletions of 8p and 22q. In contrast, gene density was average and variable expressivity associated with a 3.59 Mb duplication of 8p23.1 incidentally ascertained for paternal infertility (Family 2). Our results indicate that a greater degree of direct parental transmission, incomplete penetrance, and variable expression are features of both sub-microscopic CNVs and UBCAs with relatively low gene and high benign CNV content.


Asunto(s)
Aberraciones Cromosómicas , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Variaciones en el Número de Copia de ADN , Expresión Génica , Penetrancia , Adolescente , Adulto , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Bandeo Cromosómico , Deleción Cromosómica , Cromosomas Humanos Par 13 , Cromosomas Humanos Par 22 , Cromosomas Humanos Par 8 , Familia , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Adulto Joven
11.
BMC Nephrol ; 19(1): 301, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30376835

RESUMEN

BACKGROUND: Autosomal dominant tubulointerstitial kidney disease (ADTKD) caused by mutations in the UMOD gene (ADTKD-UMOD) is considered rare and often remains unrecognised. We aimed to establish the prevalence of genetic kidney diseases, ADTKD and ADTKD-UMOD in adult chronic kidney disease (CKD) patients, and to investigate characteristic features. METHODS: We sent questionnaires on family history to all patients with CKD stages 3-5 in our tertiary renal centre to identify patients with inherited renal disease. Details on clinical and family history were obtained from patient interviews and clinical records. Sanger sequencing of the UMOD gene was performed from blood or saliva samples. RESULTS: 2027 of 3770 sent questionnaires were returned. 459 patients reported a family history, which was consistent with inherited kidney disease in 217 patients. 182 non-responders with inherited kidney diseases were identified through a database search. Of these 399 individuals, 252 had autosomal dominant polycystic kidney disease (ADPKD), 28 had ADTKD, 25 had Alports, and 44 were unknown, resulting in 11% of CKD 3-5 patients and 19% of end-stage renal disease patients with genetic kidney diseases. Of the unknown, 40 were genotyped, of whom 31 had findings consistent with ADTKD. 30% of unknowns and 39% of unknowns with ADTKD had UMOD mutations. Altogether, 35 individuals from 18 families were found to have ten distinct UMOD mutations (three novel), making up 1% of patients with CKD 3-5, 2% of patients with end-stage renal disease, 9% of inherited kidney diseases and 56% with ADTKD. ADTKD-UMOD was the most common genetic kidney disease after ADPKD with a population prevalence of 9 per million. Less proteinuria and haematuria, but not hyperuricaemia or gout were predictive of ADTKD-UMOD. The main limitations of the study are the single-centre design and a predominantly Caucasian population. CONCLUSIONS: The prevalence of genetic kidney diseases and ADTKD-UMOD is significantly higher than previously described. Clinical features poorly predicted ADTKD-UMOD, highlighting the need for genetic testing guided by family history alone.


Asunto(s)
Nefritis Intersticial/genética , Riñón Poliquístico Autosómico Dominante/genética , Insuficiencia Renal Crónica/genética , Encuestas y Cuestionarios , Uromodulina/genética , Anciano , Femenino , Pruebas Genéticas/métodos , Humanos , Masculino , Persona de Mediana Edad , Nefritis Intersticial/diagnóstico , Nefritis Intersticial/epidemiología , Riñón Poliquístico Autosómico Dominante/diagnóstico , Riñón Poliquístico Autosómico Dominante/epidemiología , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología
12.
Am J Med Genet A ; 170(6): 1556-63, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26940150

RESUMEN

Proteoglycans are components of the extracellular matrix with diverse biological functions. Defects in proteoglycan synthesis have been linked to several human diseases with common features of short stature, hypermobility, joint dislocations, and skeletal dysplasia. B4GALT7 encodes galactosyltransferase-I that catalyzes the addition of a galactose moiety to a xylosyl group in the tetrasaccharide linker of proteoglycans. Mutations in this gene have been associated with the rare progeroid form of Ehlers Danlos syndrome and in addition more recently found to underlie Larsen of Reunion Island syndrome. Nine individuals have been reported with a diagnosis of the progeroid form of Ehlers Danlos syndrome, four of whom have had molecular characterization showing homozygous or compound heterozygous mutations in B4GALT7. We report two newly described patients with compound heterozygous mutations in B4GALT7, and show that the six individuals with confirmed mutations do not have the progeroid features described in the original five patients with a clinical diagnosis of the progeroid form of Ehlers Danlos syndrome. We suggest that galactosyltransferase-I deficiency does not cause the progeroid form of Ehlers Danlos syndrome, but instead results in a clinically recognizable syndrome comprising short stature, joint hypermobility, radioulnar synostosis, and severe hypermetropia. This group of syndromic patients are on a phenotypic spectrum with individuals who have Larsen of Reunion Island syndrome, although the key features of osteopenia, fractures and hypermetropia have not been reported in patients from Reunion Island. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Galactosiltransferasas/genética , Estudios de Asociación Genética , Mutación , Fenotipo , Sustitución de Aminoácidos , Densidad Ósea , Codón , Ecocardiografía , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Facies , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Radiografía , Síndrome
13.
Am J Med Genet A ; 170A(4): 949-57, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26698168

RESUMEN

Leri-Weill dyschondrosteosis is a pseudoautosomal dominantly-inherited skeletal dysplasia ascribed to haploinsufficiency of the SHOX gene caused by deletions, point mutations, or partial duplications of the gene, or to heterozygous deletions upstream or downstream of the intact SHOX gene involving conserved non-coding cis-regulatory DNA elements that show enhancer activity. Recently, two SHOX conserved non-coding element duplications, one upstream and one downstream, were reported in patients referred with idiopathic short stature. To further evaluate the role of these duplications in SHOX-related disorders, we describe seven patients (five with Leri-Weill dyschondrosteosis and two with short stature) all of whom have duplications of part of the upstream or downstream conserved non-coding element regions, identified by multiplex ligation-dependent probe amplification. In addition, we show data from 32 patients with an apparently identical downstream duplication that includes a proposed putative regulatory element (identified by multiplex ligation-dependent probe amplification or array comparative genome hybridization), which results in a variable phenotype from normal to mild Leri-Weill dyschondrosteosis. These additional data provide further evidence that duplications of upstream and downstream long range cis-regulatory DNA elements can result in a SHOX-related phenotype.


Asunto(s)
Duplicación Cromosómica , Enanismo/diagnóstico , Enanismo/genética , Trastornos del Crecimiento/diagnóstico , Trastornos del Crecimiento/genética , Proteínas de Homeodominio/genética , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Hibridación Genómica Comparativa , Femenino , Haplotipos , Humanos , Masculino , Mutación , Linaje , Fenotipo , Proteína de la Caja Homeótica de Baja Estatura , Adulto Joven
14.
Nephrol Dial Transplant ; 31(6): 961-70, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26346198

RESUMEN

BACKGROUND: Multiple genes underlying focal segmental glomerulosclerosis (FSGS) and/or steroid-resistant nephrotic syndrome (SRNS) have been identified, with the recent inclusion of collagen IV mutations responsible for Alport disease (AD) or thin basement membrane nephropathy (TBMN). We aimed to investigate the distribution of gene mutations in adult patients with primary FSGS/SRNS by targeted next generation sequencing (NGS). METHODS: Eighty-one adults from 76 families were recruited; 24 families had a history of renal disease. A targeted NGS panel was designed and applied, covering 39 genes implicated in FSGS/SRNS including COL4A3-5. RESULTS: Confirmed pathogenic mutations were found in 10 patients (6 with family history) from 9 families (diagnostic rate 12%). Probably pathogenic mutations were identified in an additional six patients (combined diagnostic rate 20%). Definitely pathogenic mutations were identified in 22% of patients with family history and 10% without. Mutations in COL4A3-5 were present in eight patients from six families, representing 56% of definitely pathogenic mutations, and establishing a diagnosis of AD in six patients and TBMN in two patients. Collagen mutations were identified in 38% of families with familial FSGS, and 3% with sporadic FSGS, with over half the mutations occurring in COL4A5. Patients with collagen mutations were younger at presentation and more likely to have family history, haematuria and glomerular basement membrane abnormalities. CONCLUSIONS: We show that collagen IV mutations, including COL4A5, frequently underlie FSGS and should be considered, particularly with a positive family history. Targeted NGS improves diagnostic efficiency by investigating many candidate genes in parallel.


Asunto(s)
Colágeno Tipo IV/genética , ADN/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Mutación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Colágeno Tipo IV/metabolismo , Análisis Mutacional de ADN , Femenino , Glomeruloesclerosis Focal y Segmentaria/diagnóstico , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Adulto Joven
15.
Int J Mol Sci ; 16(3): 5334-46, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25761239

RESUMEN

Novel therapeutic approaches are emerging to restore dystrophin function in Duchenne Muscular Dystrophy (DMD), a severe neuromuscular disease characterized by progressive muscle wasting and weakness. Some of the molecular therapies, such as exon skipping, stop codon read-through and internal ribosome entry site-mediated translation rely on the type and location of mutations. Hence, their potential applicability worldwide depends on mutation frequencies within populations. In view of this, we compared the mutation profiles of the populations represented in the DMD Leiden Open-source Variation Database with original data from Mexican patients (n = 162) with clinical diagnosis of the disease. Our data confirm that applicability of exon 51 is high in most populations, but also show that differences in theoretical applicability of exon skipping may exist among populations; Mexico has the highest frequency of potential candidates for the skipping of exons 44 and 46, which is different from other populations (p < 0.001). To our knowledge, this is the first comprehensive comparison of theoretical applicability of exon skipping targets among specific populations.


Asunto(s)
Distrofina/genética , Frecuencia de los Genes , Distrofia Muscular de Duchenne/genética , Mutación , Exones , Terapia Genética , Humanos , México , Distrofia Muscular de Duchenne/terapia
16.
Am J Med Genet A ; 164A(11): 2764-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25125269

RESUMEN

Léri-Weill dyschondrosteosis is caused by heterozygous mutations in SHOX or its flanking sequences, including whole or partial gene deletions, point mutations within the coding sequence, and deletions of downstream regulatory elements. The same mutations when biallelic cause the more severe Langer Mesomelic dysplasia. Here, we report on a consanguineous family with a novel deletion downstream of SHOX in which homozygously deleted individuals have a phenotype intermediate between Léri-Weill dyschondrosteosis and Langer Mesomelic dysplasia while heterozygously deleted individuals are mostly asymptomatic. The deleted region is distal to all previously described 3' deletions, suggesting the presence of an additional regulatory element, deletions of which have a milder, variable phenotypic effect.


Asunto(s)
Estudios de Asociación Genética , Proteínas de Homeodominio/genética , Homocigoto , Fenotipo , Secuencias Reguladoras de Ácidos Nucleicos , Eliminación de Secuencia , Adulto , Anciano , Hibridación Genómica Comparativa , Consanguinidad , Elementos de Facilitación Genéticos , Femenino , Trastornos del Crecimiento/diagnóstico , Trastornos del Crecimiento/genética , Humanos , Hibridación Fluorescente in Situ , Persona de Mediana Edad , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Linaje , Proteína de la Caja Homeótica de Baja Estatura
17.
J Neurogenet ; 27(1-2): 11-5, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23438214

RESUMEN

We undertook the clinical feature examination and dystrophin analysis using multiplex ligation-dependent probe amplification (MLPA) and direct DNA sequencing of selected exons in a cohort of 35 Malaysian Duchenne/Becker muscular dystrophy (DMD/BMD) patients. We found 27 patients with deletions of one or more exons, 2 patients with one exon duplication, 2 patients with nucleotide deletion, and 4 patients with nonsense mutations (including 1 patient with two nonsense mutations in the same exon). Although most cases showed compliance to the reading frame rule, we found two unrelated DMD patients with an in-frame deletion of the gene. Two novel mutations have been detected in the Dystrophin gene and our results were compatible with other studies where the majority of the mutations (62.8%) are located in the distal hotspot. However, the frequency of the mutations in our patient varied as compared with those found in other populations.


Asunto(s)
Distrofina/genética , Predisposición Genética a la Enfermedad/genética , Distrofia Muscular de Duchenne/genética , Mutación/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Creatina Quinasa/sangre , Análisis Mutacional de ADN , Femenino , Genotipo , Humanos , Malasia , Masculino , Distrofia Muscular de Duchenne/sangre , Análisis de Secuencia de ADN
18.
Genet Res (Camb) ; 95(6): 165-73, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24472419

RESUMEN

A girl aged 6 presented with haematuria and her sister (aged 5) presented with haematuria and proteinuria. Family history showed multiple individuals suffering from end stage renal failure from the paternal side of the pedigree. Following kidney biopsy in the father and paternal grandmother, the pathological diagnosis was of focal segmental glomerulosclerosis (FSGS). Exome sequencing was undertaken in the proband's sister and grandmother. Genetic variants shared by both affected individuals were interrogated to identify the genetic cause of disease. Candidate variants were then sequenced in all the family members to determine segregation with the disease. A mutation of COL4A5 known to cause Alport syndrome segregated with disease from the paternal side of the pedigree and a variant in NPHS1 was present in both paediatric cases and inherited from their mother. This study highlights the advantages of exome sequencing over single gene testing; disease presentation can be heterogeneous with several genes representing plausible candidates; candidate gene(s) may be unavailable as a diagnostic test; consecutive, single gene testing typically concludes once a single causal mutation is identified. In this family, we were able to confirm a diagnosis of Alport syndrome, which will facilitate testing in other family members.


Asunto(s)
Exoma , Glomeruloesclerosis Focal y Segmentaria/diagnóstico , Glomeruloesclerosis Focal y Segmentaria/genética , Adulto , Biopsia , Niño , Preescolar , Colágeno Tipo IV/genética , Diagnóstico Diferencial , Femenino , Humanos , Riñón/patología , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Mutación , Nefritis Hereditaria/diagnóstico , Nefritis Hereditaria/genética , Linaje , Análisis de Secuencia de ADN
19.
Am J Med Genet A ; 161A(6): 1329-38, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23636926

RESUMEN

Léri-Weill dyschondrosteosis (LWD) results from heterozygous mutations of the SHOX gene, with homozygosity or compound heterozygosity resulting in the more severe form, Langer mesomelic dysplasia (LMD). These mutations typically take the form of whole or partial gene deletions, point mutations within the coding sequence, or large (>100 kb) 3' deletions of downstream regulatory elements. We have analyzed the coding sequence of the SHOX gene and its downstream regulatory regions in a cohort of 377 individuals referred with symptoms of LWD, LMD or short stature. A causative mutation was identified in 68% of the probands with LWD or LMD (91/134). In addition, a 47.5 kb deletion was found 160 kb downstream of the SHOX gene in 17 of the 377 patients (12% of the LWD referrals, 4.5% of all referrals). In 14 of these 17 patients, this was the only potentially causative abnormality detected (13 had symptoms consistent with LWD and one had short stature only), but the other three 47.5 kb deletions were found in patients with an additional causative SHOX mutation (with symptoms of LWD rather than LMD). Parental samples were available on 14/17 of these families, and analysis of these showed a more variable phenotype ranging from apparently unaffected to LWD. Breakpoint sequence analysis has shown that the 47.5 kb deletion is identical in all 17 patients, most likely due to an ancient founder mutation rather than recurrence. This deletion was not seen in 471 normal controls (P<0.0001), providing further evidence for a phenotypic effect, albeit one with variable penetration.


Asunto(s)
Trastornos del Crecimiento/genética , Proteínas de Homeodominio/genética , Osteocondrodisplasias/genética , Adolescente , Secuencia de Bases , Niño , Preescolar , Estudios de Cohortes , Enanismo/genética , Femenino , Estudios de Seguimiento , Estudios de Asociación Genética , Pruebas Genéticas , Genotipo , Heterocigoto , Homocigoto , Humanos , Mutación , Linaje , Fenotipo , Eliminación de Secuencia , Proteína de la Caja Homeótica de Baja Estatura
20.
Lancet Oncol ; 12(1): 49-55, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21145788

RESUMEN

BACKGROUND: Lynch syndrome is caused by germline mutations in MSH2, MLH1, MSH6, and PMS2 mismatch-repair genes and leads to a high risk of colorectal and endometrial cancer. We previously showed that constitutional 3' end deletions of EPCAM can cause Lynch syndrome through epigenetic silencing of MSH2 in EPCAM-expressing tissues, resulting in tissue-specific MSH2 deficiency. We aim to establish the risk of cancer associated with such EPCAM deletions. METHODS: We obtained clinical data for 194 carriers of a 3' end EPCAM deletion from 41 families known to us at the Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands and compared cancer risk with data from a previously described cohort of 473 carriers from 91 families with mutations in MLH1, MSH2, MSH6, or a combined EPCAM-MSH2 deletion. FINDINGS: 93 of the 194 EPCAM deletion carriers were diagnosed with colorectal cancer; three of the 92 women with EPCAM deletions were diagnosed with endometrial cancer. Carriers of an EPCAM deletion had a 75% (95% CI 65-85) cumulative risk of colorectal cancer before the age of 70 years (mean age at diagnosis 43 years [SD 12]), which did not differ significantly from that of carriers of combined EPCAM-MSH2 deletion (69% [95% CI 47-91], p=0·8609) or mutations in MSH2 (77% [64-90], p=0·5892) or MLH1 (79% [68-90], p=0·5492), but was higher than noted for carriers of MSH6 mutation (50% [38-62], p<0·0001). By contrast, women with EPCAM deletions had a 12% [0-27] cumulative risk of endometrial cancer, which was lower than was that noted for carriers of a combined EPCAM-MSH2 deletion (55% [20-90], p<0·0001) or of a mutation in MSH2 (51% [33-69], p=0·0006) or MSH6 (34% [20-48], p=0·0309), but did not differ significantly from that noted for MLH1 (33% [15-51], p=0·1193) mutation carriers. This risk seems to be restricted to deletions that extend close to the MSH2 gene promoter. Of 194 carriers of an EPCAM deletion, three had duodenal cancer and four had pancreatic cancer. INTERPRETATION: EPCAM deletion carriers have a high risk of colorectal cancer; only those with deletions extending close to the MSH2 promoter have an increased risk of endometrial cancer. These results underscore the effect of mosaic MSH2 deficiency, leading to variable cancer risks, and could form the basis of an optimised protocol for the recognition and targeted prevention of cancer in EPCAM deletion carriers.


Asunto(s)
Antígenos de Neoplasias/genética , Moléculas de Adhesión Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Endometriales/genética , Eliminación de Secuencia , Adolescente , Adulto , Anciano , Estudios de Cohortes , Neoplasias Colorrectales/etiología , Neoplasias Endometriales/etiología , Molécula de Adhesión Celular Epitelial , Femenino , Eliminación de Gen , Humanos , Masculino , Persona de Mediana Edad , Proteína 2 Homóloga a MutS/genética , Regiones Promotoras Genéticas , Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA