Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Nucleic Acids Res ; 51(12): 6443-6460, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37207340

RESUMEN

The mitochondrial ribosome (mitoribosome) has diverged drastically from its evolutionary progenitor, the bacterial ribosome. Structural and compositional diversity is particularly striking in the phylum Euglenozoa, with an extraordinary protein gain in the mitoribosome of kinetoplastid protists. Here we report an even more complex mitoribosome in diplonemids, the sister-group of kinetoplastids. Affinity pulldown of mitoribosomal complexes from Diplonema papillatum, the diplonemid type species, demonstrates that they have a mass of > 5 MDa, contain as many as 130 integral proteins, and exhibit a protein-to-RNA ratio of 11:1. This unusual composition reflects unprecedented structural reduction of ribosomal RNAs, increased size of canonical mitoribosomal proteins, and accretion of three dozen lineage-specific components. In addition, we identified >50 candidate assembly factors, around half of which contribute to early mitoribosome maturation steps. Because little is known about early assembly stages even in model organisms, our investigation of the diplonemid mitoribosome illuminates this process. Together, our results provide a foundation for understanding how runaway evolutionary divergence shapes both biogenesis and function of a complex molecular machine.


Asunto(s)
Euglenozoos , Ribosomas Mitocondriales , Euglenozoos/clasificación , Euglenozoos/citología , Euglenozoos/genética , Eucariontes/citología , Eucariontes/genética , Ribosomas Mitocondriales/metabolismo , Proteínas Ribosómicas/metabolismo , ARN Ribosómico/metabolismo
2.
BMC Biol ; 21(1): 99, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37143068

RESUMEN

BACKGROUND: Diplonemid flagellates are among the most abundant and species-rich of known marine microeukaryotes, colonizing all habitats, depths, and geographic regions of the world ocean. However, little is known about their genomes, biology, and ecological role. RESULTS: We present the first nuclear genome sequence from a diplonemid, the type species Diplonema papillatum. The ~ 280-Mb genome assembly contains about 32,000 protein-coding genes, likely co-transcribed in groups of up to 100. Gene clusters are separated by long repetitive regions that include numerous transposable elements, which also reside within introns. Analysis of gene-family evolution reveals that the last common diplonemid ancestor underwent considerable metabolic expansion. D. papillatum-specific gains of carbohydrate-degradation capability were apparently acquired via horizontal gene transfer. The predicted breakdown of polysaccharides including pectin and xylan is at odds with reports of peptides being the predominant carbon source of this organism. Secretome analysis together with feeding experiments suggest that D. papillatum is predatory, able to degrade cell walls of live microeukaryotes, macroalgae, and water plants, not only for protoplast feeding but also for metabolizing cell-wall carbohydrates as an energy source. The analysis of environmental barcode samples shows that D. papillatum is confined to temperate coastal waters, presumably acting in bioremediation of eutrophication. CONCLUSIONS: Nuclear genome information will allow systematic functional and cell-biology studies in D. papillatum. It will also serve as a reference for the highly diverse diplonemids and provide a point of comparison for studying gene complement evolution in the sister group of Kinetoplastida, including human-pathogenic taxa.


Asunto(s)
Eucariontes , Kinetoplastida , Humanos , Eucariontes/genética , Profase Meiótica I , Euglenozoos/genética , Kinetoplastida/genética , Familia de Multigenes , Filogenia
4.
Nat Methods ; 17(5): 481-494, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32251396

RESUMEN

Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.


Asunto(s)
ADN/administración & dosificación , Eucariontes/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Biología Marina , Modelos Biológicos , Transformación Genética , Biodiversidad , Ecosistema , Ambiente , Eucariontes/clasificación , Especificidad de la Especie
5.
Mol Biol Evol ; 38(3): 788-804, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32886790

RESUMEN

The mitoribosome, as known from studies in model organisms, deviates considerably from its ancestor, the bacterial ribosome. Deviations include substantial reduction of the mitochondrial ribosomal RNA (mt-rRNA) structure and acquisition of numerous mitochondrion-specific (M) mitoribosomal proteins (mtRPs). A broadly accepted view assumes that M-mtRPs compensate for structural destabilization of mt-rRNA resulting from its evolutionary remodeling. Since most experimental information on mitoribosome makeup comes from eukaryotes having derived mitochondrial genomes and mt-rRNAs, we tested this assumption by investigating the mitochondrial translation machinery of jakobids, a lineage of unicellular protists with the most bacteria-like mitochondrial genomes. We report here proteomics analyses of the Andalucia godoyi small mitoribosomal subunit and in silico transcriptomic and comparative genome analyses of four additional jakobids. Jakobids have mt-rRNA structures that minimally differ from their bacterial counterparts. Yet, with at least 31 small subunit and 44 large subunit mtRPs, the mitoriboproteome of Andalucia is essentially as complex as that in animals or fungi. Furthermore, the relatively high conservation of jakobid sequences has helped to clarify the identity of several mtRPs, previously considered to be lineage-specific, as divergent homologs of conserved M-mtRPs, notably mS22 and mL61. The coexistence of bacteria-like mt-rRNAs and a complex mitoriboproteome refutes the view that M-mtRPs were ancestrally recruited to stabilize deviations of mt-rRNA structural elements. We postulate instead that the numerous M-mtRPs acquired in the last eukaryotic common ancestor allowed mt-rRNAs to pursue a broad range of evolutionary trajectories across lineages: from dramatic reduction to acquisition of novel elements to structural conservatism.


Asunto(s)
Genoma Mitocondrial , Genoma de Protozoos , Ribosomas Mitocondriales , ARN Ribosómico , Proteínas Ribosómicas , Eucariontes
6.
Nucleic Acids Res ; 48(5): 2694-2708, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31919519

RESUMEN

Diplonemids are highly abundant heterotrophic marine protists. Previous studies showed that their strikingly bloated mitochondrial genome is unique because of systematic gene fragmentation and manifold RNA editing. Here we report a comparative study of mitochondrial genome architecture, gene structure and RNA editing of six recently isolated, phylogenetically diverse diplonemid species. Mitochondrial gene fragmentation and modes of RNA editing, which include cytidine-to-uridine (C-to-U) and adenosine-to-inosine (A-to-I) substitutions and 3' uridine additions (U-appendage), are conserved across diplonemids. Yet as we show here, all these features have been pushed to their extremes in the Hemistasiidae lineage. For example, Namystynia karyoxenos has its genes fragmented into more than twice as many modules than other diplonemids, with modules as short as four nucleotides. Furthermore, we detected in this group multiple A-appendage and guanosine-to-adenosine (G-to-A) substitution editing events not observed before in diplonemids and found very rarely elsewhere. With >1,000 sites, C-to-U and A-to-I editing in Namystynia is nearly 10 times more frequent than in other diplonemids. The editing density of 12% in coding regions makes Namystynia's the most extensively edited transcriptome described so far. Diplonemid mitochondrial genome architecture, gene structure and post-transcriptional processes display such high complexity that they challenge all other currently known systems.


Asunto(s)
Euglenozoos/genética , Genes , Genoma Mitocondrial , Edición de ARN/genética , Secuencia de Bases , Cromosomas/genética , Secuencia Conservada , ADN Mitocondrial/genética , Filogenia
7.
BMC Biol ; 18(1): 22, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32122349

RESUMEN

BACKGROUND: Comparative analyses have indicated that the mitochondrion of the last eukaryotic common ancestor likely possessed all the key core structures and functions that are widely conserved throughout the domain Eucarya. To date, such studies have largely focused on animals, fungi, and land plants (primarily multicellular eukaryotes); relatively few mitochondrial proteomes from protists (primarily unicellular eukaryotic microbes) have been examined. To gauge the full extent of mitochondrial structural and functional complexity and to identify potential evolutionary trends in mitochondrial proteomes, more comprehensive explorations of phylogenetically diverse mitochondrial proteomes are required. In this regard, a key group is the jakobids, a clade of protists belonging to the eukaryotic supergroup Discoba, distinguished by having the most gene-rich and most bacteria-like mitochondrial genomes discovered to date. RESULTS: In this study, we assembled the draft nuclear genome sequence for the jakobid Andalucia godoyi and used a comprehensive in silico approach to infer the nucleus-encoded portion of the mitochondrial proteome of this protist, identifying 864 candidate mitochondrial proteins. The A. godoyi mitochondrial proteome has a complexity that parallels that of other eukaryotes, while exhibiting an unusually large number of ancestral features that have been lost particularly in opisthokont (animal and fungal) mitochondria. Notably, we find no evidence that the A. godoyi nuclear genome has or had a gene encoding a single-subunit, T3/T7 bacteriophage-like RNA polymerase, which functions as the mitochondrial transcriptase in all eukaryotes except the jakobids. CONCLUSIONS: As genome and mitochondrial proteome data have become more widely available, a strikingly punctuate phylogenetic distribution of different mitochondrial components has been revealed, emphasizing that the pathways of mitochondrial proteome evolution are likely complex and lineage-specific. Unraveling this complexity will require comprehensive comparative analyses of mitochondrial proteomes from a phylogenetically broad range of eukaryotes, especially protists. The systematic in silico approach described here offers a valuable adjunct to direct proteomic analysis (e.g., via mass spectrometry), particularly in cases where the latter approach is constrained by sample limitation or other practical considerations.


Asunto(s)
Eucariontes/genética , Genoma Mitocondrial , Proteínas Mitocondriales/genética , Proteoma , Núcleo Celular/genética , Proteínas Mitocondriales/metabolismo
8.
Environ Microbiol ; 22(9): 3660-3670, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32548939

RESUMEN

Diplonemids are a group of highly diverse and abundant marine microeukaryotes that belong to the phylum Euglenozoa and form a sister clade to the well-studied, mostly parasitic kinetoplastids. Very little is known about the biology of diplonemids, as few species have been formally described and just one, Diplonema papillatum, has been studied to a decent extent at the molecular level. Following up on our previous results showing stable but random integration of delivered extraneous DNA, we demonstrate here homologous recombination in D. papillatum. Targeting various constructs to the intended position in the nuclear genome was successful when 5' and 3' homologous regions longer than 1 kbp were used, achieving N-terminal tagging with mCherry and gene replacement of α- and ß-tubulins. For more convenient genetic manipulation, we designed a modular plasmid, pDP002, which bears a protein-A tag and used it to generate and express a C-terminally tagged mitoribosomal protein. Lastly, we developed an improved transformation protocol for broader applicability across laboratories. Our robust methodology allows the replacement, integration as well as endogenous tagging of D. papillatum genes, thus opening the door to functional studies in this species and establishing a basic toolkit for reverse genetics of diplonemids in general.


Asunto(s)
Euglenozoos/genética , Recombinación Homóloga
9.
J Biol Chem ; 293(41): 16043-16056, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30166340

RESUMEN

Mitochondrial genes of Euglenozoa (Kinetoplastida, Diplonemea, and Euglenida) are notorious for being barely recognizable, raising the question of whether such divergent genes actually code for functional proteins. Here we demonstrate the translation and identify the function of five previously unassigned y genes encoded by mitochondrial DNA (mtDNA) of diplonemids. As is the rule in diplonemid mitochondria, y genes are fragmented, with gene pieces transcribed separately and then trans-spliced to form contiguous mRNAs. Further, y transcripts undergo massive RNA editing, including uridine insertions that generate up to 16-residue-long phenylalanine tracts, a feature otherwise absent from conserved mitochondrial proteins. By protein sequence analyses, MS, and enzymatic assays in Diplonema papillatum, we show that these y genes encode the subunits Nad2, -3, -4L, -6, and -9 of the respiratory chain Complex I (CI; NADH:ubiquinone oxidoreductase). The few conserved residues of these proteins are essentially those involved in proton pumping across the inner mitochondrial membrane and in coupling ubiquinone reduction to proton pumping (Nad2, -3, -4L, and -6) and in interactions with subunits containing electron-transporting Fe-S clusters (Nad9). Thus, in diplonemids, 10 CI subunits are mtDNA-encoded. Further, MS of D. papillatum CI allowed identification of 26 conventional and 15 putative diplonemid-specific nucleus-encoded components. Most conventional accessory subunits are well-conserved but unusually long, possibly compensating for the streamlined mtDNA-encoded components and for missing, otherwise widely distributed, conventional subunits. Finally, D. papillatum CI predominantly exists as a supercomplex I:III:IV that is exceptionally stable, making this protist an organism of choice for structural studies.


Asunto(s)
ADN Mitocondrial/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Euglenozoos/genética , Euglenozoos/metabolismo , Transporte de Electrón , Espectrometría de Masas , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , NADH Deshidrogenasa/metabolismo , Fenilalanina/química , Filogenia , Protones , Edición de ARN , Empalme del ARN , Ubiquinona/química
10.
Trends Genet ; 32(9): 553-565, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27460648

RESUMEN

Unrecognizable genes are an unsettling problem in genomics. Here, we survey the various types of cryptic genes and the corresponding deciphering strategies employed by cells. Encryption that renders genes substantially different from homologs in other species includes sequence substitution, insertion, deletion, fragmentation plus scrambling, and invasion by mobile genetic elements. Cells decode cryptic genes at the DNA, RNA or protein level. We will focus on a recently discovered case of unparalleled encryption involving massive gene fragmentation and nucleotide deletions and substitutions, occurring in the mitochondrial genome of a poorly understood protist group, the diplonemids. This example illustrates that comprehensive gene detection requires not only auxiliary sequence information - transcriptome and proteome data - but also knowledge about a cell's deciphering arsenal.


Asunto(s)
Genoma Mitocondrial , Secuencias Repetitivas Esparcidas/genética , Edición de ARN/genética , Transcripción Genética , ADN Mitocondrial/genética , Euglenozoos/genética , Mitocondrias/genética
11.
Trends Genet ; 31(4): 187-94, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25795412

RESUMEN

Programmed translational bypassing enables ribosomes to 'ignore' a precise mRNA interval of several dozen nucleotides. Well-characterized bypassed sequences include hop and byp elements, present in bacteriophage T4 and mitochondria of the yeast Magnusiomyces capitatus, respectively. The bypassing mechanism of byps is probably similar to that of hop, yet the former appears more effective and less constrained as to sequence context. Furthermore, both elements are mobile but hop moves as part of a cassette including a homing endonuclease, whereas byps seem to spread like miniature DNA transposable elements known as GC clusters. Here, we argue that hop and byps arose independently by convergent evolution, and that byps evolved in magnusiomycete mitochondria due to (as yet unknown) alterations of the mitochondrial translation machinery.


Asunto(s)
Mitocondrias/genética , Mitocondrias/metabolismo , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , Secuencias Reguladoras de Ácido Ribonucleico , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Sistema de Lectura Ribosómico , ARN Mensajero/química , Levaduras/genética , Levaduras/metabolismo
12.
Environ Microbiol ; 20(3): 1030-1040, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29318727

RESUMEN

Diplonema papillatum is the type species of diplonemids, which are among the most abundant and diverse heterotrophic microeukaryotes in the world's oceans. Diplonemids are also known for a unique form of post-transcriptional processing in mitochondria. However, the lack of reverse genetics methodologies in these protists has hampered elucidation of their cellular and molecular biology. Here we report a protocol for D. papillatum transformation. We have identified several antibiotics to which D. papillatum is sensitive and thus are suitable selectable markers, and focus in particular on puromycin. Constructs were designed encoding antibiotic resistance markers, fluorescent tags, and additional genomic sequences from D. papillatum to facilitate vector integration into chromosomes. We established conditions for effective electroporation, and demonstrate that electroporated constructs can be stably integrated in the D. papillatum nuclear genome. In D. papillatum transformants, the heterologous puromycin resistance gene is transcribed into mRNA and translated into protein, as determined by Southern hybridization, reverse transcription, and Western blot analyses. This is the first documented case of transformation in a euglenozoan protist outside the well-studied kinetoplastids, making D. papillatum a genetically tractable organism and potentially a model system for marine microeukaryotes.


Asunto(s)
Euglenozoos/fisiología , Transformación Genética , Organismos Acuáticos , Resistencia a Medicamentos , Euglenozoos/genética , Eucariontes/genética , Regulación de la Expresión Génica , Mitocondrias , Filogenia , Puromicina/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
IUBMB Life ; 70(12): 1197-1206, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30304578

RESUMEN

Mitochondria are the sandbox of evolution as exemplified most particularly by the diplonemids, a group of marine microeukaryotes. These protists are uniquely characterized by their highly multipartite mitochondrial genome and systematically fragmented genes whose pieces are spread out over several dozens of chromosomes. The type species Diplonema papillatum was the first member of this group in which the expression of fragmented mitochondrial genes was investigated experimentally. We now know that gene expression involves separate transcription of gene pieces (modules), RNA editing of module transcripts, and module joining to mature mRNAs and rRNAs. The mechanism of cognate module recognition and ligation is distinct from known intron splicing and remains to be uncovered. Here, we review the current status of research on mitochondrial genome architecture, as well as gene complement, structure, and expression modes in diplonemids. Further, we discuss the potential molecular mechanisms of posttranscriptional processing, and finally reflect on the evolutionary trajectories and trends of mtDNA evolution as seen in this protist group. © 2018 IUBMB Life, 70(12):1197-1206, 2018.


Asunto(s)
Organismos Acuáticos/genética , Euglenozoos/genética , Genoma Mitocondrial/genética , Mitocondrias/genética , ADN Mitocondrial/genética , Genes Mitocondriales/genética , Intrones/genética
14.
Nucleic Acids Res ; 44(10): 4907-19, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27001515

RESUMEN

Gene structure and expression in diplonemid mitochondria are unparalleled. Genes are fragmented in pieces (modules) that are separately transcribed, followed by the joining of module transcripts to contiguous RNAs. Some instances of unique uridine insertion RNA editing at module boundaries were noted, but the extent and potential occurrence of other editing types remained unknown. Comparative analysis of deep transcriptome and genome data from Diplonema papillatum mitochondria reveals ∼220 post-transcriptional insertions of uridines, but no insertions of other nucleotides nor deletions. In addition, we detect in total 114 substitutions of cytosine by uridine and adenosine by inosine, amassed into unusually compact clusters. Inosines in transcripts were confirmed experimentally. This is the first report of adenosine-to-inosine editing of mRNAs and ribosomal RNAs in mitochondria. In mRNAs, editing causes mostly amino-acid additions and non-synonymous substitutions; in ribosomal RNAs, it permits formation of canonical secondary structures. Two extensively edited transcripts were compared across four diplonemids. The pattern of uridine-insertion editing is strictly conserved, whereas substitution editing has diverged dramatically, but still rendering diplonemid proteins more similar to other eukaryotic orthologs. We posit that RNA editing not only compensates but also sustains, or even accelerates, ultra-rapid evolution of genome structure and sequence in diplonemid mitochondria.


Asunto(s)
Euglenozoos/genética , Mitocondrias/genética , Edición de ARN , ARN/metabolismo , Adenosina/metabolismo , Desaminación , Euglenozoos/metabolismo , Genes Mitocondriales , Genes de ARNr , Inosina/metabolismo , ARN/química , ARN Mitocondrial , Trans-Empalme , Transcriptoma
15.
Proc Natl Acad Sci U S A ; 111(16): 5926-31, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24711422

RESUMEN

Programmed translational bypassing is a process whereby ribosomes "ignore" a substantial interval of mRNA sequence. Although discovered 25 y ago, the only experimentally confirmed example of this puzzling phenomenon is expression of the bacteriophage T4 gene 60. Bypassing requires translational blockage at a "takeoff codon" immediately upstream of a stop codon followed by a hairpin, which causes peptidyl-tRNA dissociation and reassociation with a matching "landing triplet" 50 nt downstream, where translation resumes. Here, we report 81 translational bypassing elements (byps) in mitochondria of the yeast Magnusiomyces capitatus and demonstrate in three cases, by transcript analysis and proteomics, that byps are retained in mitochondrial mRNAs but not translated. Although mitochondrial byps resemble the bypass sequence in the T4 gene 60, they utilize unused codons instead of stops for translational blockage and have relaxed matching rules for takeoff/landing sites. We detected byp-like sequences also in mtDNAs of several Saccharomycetales, indicating that byps are mobile genetic elements. These byp-like sequences lack bypassing activity and are tolerated when inserted in-frame in variable protein regions. We hypothesize that byp-like elements have the potential to contribute to evolutionary diversification of proteins by adding new domains that allow exploration of new structures and functions.


Asunto(s)
Mitocondrias/genética , Biosíntesis de Proteínas/genética , Levaduras/genética , Carbono/farmacología , ADN Mitocondrial/metabolismo , Fermentación/efectos de los fármacos , Fermentación/genética , Genes Fúngicos/genética , Genes Mitocondriales/genética , Datos de Secuencia Molecular , Mutagénesis Insercional/genética , Sistemas de Lectura Abierta/genética , Filogenia , Procesamiento Postranscripcional del ARN/efectos de los fármacos , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Levaduras/efectos de los fármacos , Levaduras/crecimiento & desarrollo
16.
RNA Biol ; 13(12): 1204-1211, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27715490

RESUMEN

The instructions to make proteins and structural RNAs are laid down in gene sequences. Yet, in certain instances, these primary instructions need to be modified considerably during gene expression, most often at the transcript level. Here we review a case of massive post-transcriptional revisions via trans-splicing and RNA editing, a phenomenon occurring in mitochondria of a recently recognized protist group, the diplonemids. As of now, the various post-transcriptional steps have been cataloged in detail, but how these processes function is still unknown. Since genetic manipulation techniques such as gene replacement and RNA interference have not yet been established for these organisms, alternative strategies have to be deployed. Here, we discuss the experimental and bioinformatics approaches that promise to unravel the molecular machineries of trans-splicing and RNA editing in Diplonema mitochondria.


Asunto(s)
Euglenozoos/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , ARN de Transferencia/metabolismo , Secuencia de Bases , Regulación de la Expresión Génica , Proteínas Protozoarias/genética , Edición de ARN , Procesamiento Postranscripcional del ARN
17.
Nucleic Acids Res ; 42(4): 2660-72, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24259427

RESUMEN

Mitochondrial ribosomal RNAs (rRNAs) often display reduced size and deviant secondary structure, and sometimes are fragmented, as are their corresponding genes. Here we report a mitochondrial large subunit rRNA (mt-LSU rRNA) with unprecedented features. In the protist Diplonema, the rnl gene is split into two pieces (modules 1 and 2, 534- and 352-nt long) that are encoded by distinct mitochondrial chromosomes, yet the rRNA is continuous. To reconstruct the post-transcriptional maturation pathway of this rRNA, we have catalogued transcript intermediates by deep RNA sequencing and RT-PCR. Gene modules are transcribed separately. Subsequently, transcripts are end-processed, the module-1 transcript is polyuridylated and the module-2 transcript is polyadenylated. The two modules are joined via trans-splicing that retains at the junction ∼ 26 uridines, resulting in an extent of insertion RNA editing not observed before in any system. The A-tail of trans-spliced molecules is shorter than that of mono-module 2, and completely absent from mitoribosome-associated mt-LSU rRNA. We also characterize putative antisense transcripts. Antisense-mono-modules corroborate bi-directional transcription of chromosomes. Antisense-mt-LSU rRNA, if functional, has the potential of guiding concomitantly trans-splicing and editing of this rRNA. Together, these findings open a window on the investigation of complex regulatory networks that orchestrate multiple and biochemically diverse post-transcriptional events.


Asunto(s)
Euglenozoos/genética , Edición de ARN , ARN Ribosómico/metabolismo , ARN/metabolismo , Trans-Empalme , Secuencia de Bases , Mitocondrias/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN/química , ARN/genética , ARN sin Sentido/análisis , ARN Mitocondrial , ARN Ribosómico/química , ARN Ribosómico/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo
18.
Nucleic Acids Res ; 42(22): 13764-77, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25429974

RESUMEN

5S Ribosomal RNA (5S rRNA) is a universal component of ribosomes, and the corresponding gene is easily identified in archaeal, bacterial and nuclear genome sequences. However, organelle gene homologs (rrn5) appear to be absent from most mitochondrial and several chloroplast genomes. Here, we re-examine the distribution of organelle rrn5 by building mitochondrion- and plastid-specific covariance models (CMs) with which we screened organelle genome sequences. We not only recover all organelle rrn5 genes annotated in GenBank records, but also identify more than 50 previously unrecognized homologs in mitochondrial genomes of various stramenopiles, red algae, cryptomonads, malawimonads and apusozoans, and surprisingly, in the apicoplast (highly derived plastid) genomes of the coccidian pathogens Toxoplasma gondii and Eimeria tenella. Comparative modeling of RNA secondary structure reveals that mitochondrial 5S rRNAs from brown algae adopt a permuted triskelion shape that has not been seen elsewhere. Expression of the newly predicted rrn5 genes is confirmed experimentally in 10 instances, based on our own and published RNA-Seq data. This study establishes that particularly mitochondrial 5S rRNA has a much broader taxonomic distribution and a much larger structural variability than previously thought. The newly developed CMs will be made available via the Rfam database and the MFannot organelle genome annotator.


Asunto(s)
Genoma Mitocondrial , Genoma de Plastidios , ARN Ribosómico 5S/genética , Coccidios/genética , Bases de Datos de Ácidos Nucleicos , Genes Mitocondriales , Genes de ARNr , Conformación de Ácido Nucleico , Phaeophyceae/genética , ARN/química , ARN/genética , ARN Mitocondrial , ARN Ribosómico 5S/química , ARN Ribosómico 5S/clasificación , Análisis de Secuencia de ARN , Estramenopilos/genética
19.
Mol Biol Evol ; 31(3): 517-28, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24307687

RESUMEN

Phosphotyrosine (pTyr) signaling is involved in development and maintenance of metazoans' multicellular body through cell-to-cell communication. Tyrosine kinases (TKs), tyrosine phosphatases, and other proteins relaying the signal compose the cascade. Domain architectures of the pTyr signaling proteins are diverse in metazoans, reflecting their complex intercellular communication. Previous studies had shown that the metazoan-type TKs, as well as other pTyr signaling proteins, were already diversified in the common ancestor of metazoans, choanoflagellates, and filastereans (which are together included in the clade Holozoa) whereas they are absent in fungi and other nonholozoan lineages. However, the earliest-branching holozoans Ichthyosporea and Corallochytrea, as well as the two fungi-related amoebae Fonticula and Nuclearia, have not been studied. Here, we analyze the complete genome sequences of two ichthyosporeans and Fonticula, and RNAseq data of three additional ichthyosporeans, one corallochytrean, and Nuclearia. Both the ichthyosporean and corallochytrean genomes encode a large variety of receptor TKs (RTKs) and cytoplasmic TKs (CTKs), as well as other pTyr signaling components showing highly complex domain architectures. However, Nuclearia and Fonticula have no TK, and show much less diversity in other pTyr signaling components. The CTK repertoires of both Ichthyosporea and Corallochytrea are similar to those of Metazoa, Choanoflagellida, and Filasterea, but the RTK sets are totally different from each other. The complex pTyr signaling equipped with positive/negative feedback mechanism likely emerged already at an early stage of holozoan evolution, yet keeping a high evolutionary plasticity in extracellular signal reception until the co-option of the system for cell-to-cell communication in metazoans.


Asunto(s)
Coanoflagelados/enzimología , Fosfotirosina/metabolismo , Transducción de Señal , Animales , Evolución Molecular , Mesomycetozoea/enzimología , Modelos Moleculares , Filogenia , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/química
20.
BMC Struct Biol ; 15: 20, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26449279

RESUMEN

BACKGROUND: RNA ligases 2 are scarce and scattered across the tree of life. Two members of this family are well studied: the mitochondrial RNA editing ligase from the parasitic trypanosomes (Kinetoplastea), a promising drug target, and bacteriophage T4 RNA ligase 2, a workhorse in molecular biology. Here we report the identification of a divergent RNA ligase 2 (DpRNL) from Diplonema papillatum (Diplonemea), a member of the kinetoplastids' sister group. METHODS: We identified DpRNL with methods based on sensitive hidden Markov Model. Then, using homology modeling and molecular dynamics simulations, we established a three dimensional structure model of DpRNL complexed with ATP and Mg2+. RESULTS: The 3D model of Diplonema was compared with available crystal structures from Trypanosoma brucei, bacteriophage T4, and two archaeans. Interaction of DpRNL with ATP is predicted to involve double π-stacking, which has not been reported before in RNA ligases. This particular contact would shift the orientation of ATP and have considerable consequences on the interaction network of amino acids in the catalytic pocket. We postulate that certain canonical amino acids assume different functional roles in DpRNL compared to structurally homologous residues in other RNA ligases 2, a reassignment indicative of constructive neutral evolution. Finally, both structure comparison and phylogenetic analysis show that DpRNL is not specifically related to RNA ligases from trypanosomes, suggesting a unique adaptation of the latter for RNA editing, after the split of diplonemids and kinetoplastids. CONCLUSION: Homology modeling and molecular dynamics simulations strongly suggest that DpRNL is an RNA ligase 2. The predicted innovative reshaping of DpRNL's catalytic pocket is worthwhile to be tested experimentally.


Asunto(s)
Euglenozoos/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , ARN Ligasa (ATP)/química , ARN Ligasa (ATP)/metabolismo , Adenosina Trifosfato/metabolismo , Dominio Catalítico , Euglenozoos/química , Euglenozoos/enzimología , Magnesio/metabolismo , Cadenas de Markov , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Filogenia , Proteínas Protozoarias/genética , ARN Ligasa (ATP)/genética , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA