RESUMEN
BACKGROUND: Shorter but effective tuberculosis treatment regimens would be of value to the tuberculosis treatment community. High-dose rifampicin has been associated with more rapid and secure lung sterilization and may enable shorter tuberculosis treatment regimens. METHODS: We randomly assigned adults who were given a diagnosis of rifampicin-susceptible pulmonary tuberculosis to a 6-month control regimen, a similar 4-month regimen of rifampicin at 1200 mg/d (study regimen 1 [SR1]), or a 4-month regimen of rifampicin at 1800 mg/d (study regimen 2 [SR2]). Sputum specimens were collected at regular intervals. The primary end point was a composite of treatment failure and relapse in participants who were sputum smear positive at baseline. The noninferiority margin was 8 percentage points. Using a sequence of ordered hypotheses, noninferiority of SR2 was tested first. RESULTS: Between January 2017 and December 2020, 672 patients were enrolled in six countries, including 191 in the control group, 192 in the SR1 group, and 195 in the SR2 group. Noninferiority was not shown. Favorable responses rates were 93, 90, and 87% in the control, SR1, and SR2 groups, respectively, for a country-adjusted absolute risk difference of 6.3 percentage points (90% confidence interval, 1.1 to 11.5) comparing SR2 with the control group. The proportions of participants experiencing a grade 3 or 4 adverse event were 4.0, 4.5, and 4.4% in the control, SR1, and SR2 groups, respectively. CONCLUSIONS: Four-month high-dose rifampicin regimens did not have dose-limiting toxicities or side effects but failed to meet noninferiority criteria compared with the standard 6-month control regimen for treatment of pulmonary tuberculosis. (Funded by the MRC/Wellcome Trust/DFID Joint Global Health Trials Scheme; ClinicalTrials.gov number, NCT02581527.)
Asunto(s)
Rifampin , Tuberculosis Pulmonar , Humanos , Rifampin/efectos adversos , Antituberculosos/efectos adversos , Isoniazida/uso terapéutico , Quimioterapia Combinada , Tuberculosis Pulmonar/inducido químicamenteRESUMEN
Understanding the ecology of drug-resistant pathogens is essential for devising rational programs to preserve the effective lifespan of antimicrobial agents and to abrogate epidemics of drug-resistant organisms. Mathematical models predict that strain fitness is an important determinant of multidrug-resistant Mycobacterium tuberculosis transmission, but the effects of strain diversity have been largely overlooked. Here we compared the impact of resistance mutations on the transmission of isoniazid-resistant M. tuberculosis in San Francisco during a 9-y period. Strains with a KatG S315T or inhA promoter mutation were more likely to spread than strains with other mutations. The impact of these mutations on the transmission of isoniazid-resistant strains was comparable to the effect of other clinical determinants of transmission. Associations were apparent between specific drug resistance mutations and the main M. tuberculosis lineages. Our results show that in addition to host and environmental factors, strain genetic diversity can influence the transmission dynamics of drug-resistant bacteria.
Asunto(s)
Antituberculosos/uso terapéutico , Isoniazida/uso terapéutico , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/genética , Tuberculosis Resistente a Múltiples Medicamentos/transmisión , Alelos , Linaje de la Célula/genética , Variación Genética , Humanos , MutaciónRESUMEN
The resurgence of tuberculosis around the world has renewed interest in understanding the epidemiology and pathogenesis of this disease. A revolutionary advance in the field of tuberculosis research has been the development of molecular techniques that permit identification and tracking of individual strains of Mycobacterium tuberculosis. With these techniques, molecular epidemiology has been established as a new discipline that adds another dimension to the classical epidemiology of tuberculosis and has increased our understanding of the transmission dynamics of M. tuberculosis. The increased epidemiological knowledge has led to discovery of inadequacies in tuberculosis control programs; this information has helped garner resources for program improvement and has highlighted the need for the continuous surveillance of tuberculosis. Additional genetic methods are being developed based on the knowledge of the genome sequence of M. tuberculosis. These simpler and less costly genotyping techniques promise to expand the application of molecular epidemiology to developing nations (where 90% of the disease burden occurs) in support of national tuberculosis programs. Furthermore, these tools permit ever more effective probes into the dynamics of transmission, the population structure, evolution and pathogenesis of M. tuberculosis.
Asunto(s)
Mycobacterium tuberculosis/genética , Tuberculosis/epidemiología , Tuberculosis/microbiología , ADN Bacteriano/genética , Farmacorresistencia Bacteriana , Genotipo , Humanos , Epidemiología Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/prevención & control , Tuberculosis/transmisiónRESUMEN
The resurgence of tuberculosis around the world has renewed interest in understanding the epidemiology and pathogenesis of this disease. A revolutionary advance in the field of tuberculosis research has been the development of molecular techniques that permit identification and tracking of individual strains of Mycobacterium tuberculosis. With these techniques, molecular epidemiology has been established as a new discipline that adds another dimension to the classical epidemiology of tuberculosis and has increased our understanding of the transmission dynamics of M. tuberculosis. The increased epidemiological knowledge has led to discovery of inadequacies in tuberculosis control programs; this information has helped garner resources for program improvement and has highlighted the need for the continuous surveillance of tuberculosis. Additional genetic methods are being developed based on the knowledge of the genome sequence of M. tuberculosis. These simpler and less costly genotyping techniques promise to expand the application of molecular epidemiology to developing nations (where 90% of the disease burden occurs) in support of national tuberculosis programs. Further more, these tools permit ever more effective probes into the dynamics of transmission, the population structure, evolution and pathogenesis of M. tuberculosis.
Epidemiología molecular de la tuberculosis: métodos y aplicaciones La reemergencia de la tuberculosis en el mundo ha despertado el interés en el entendimiento de la epidemiología y patogénesis de esta enfermedad. Un revolucionario avance en este campo de investigación ha sido el desarrollo de técnicas moleculares que permiten identificar y establecer la huella particular de cada cepa de M. tuberculosis. Con el uso de estas técnicas, y el establecimiento de la epidemilogia molecular como nueva disciplina se adicionó otra dimensión a la epidemiologia clásica de la tuberculosis y ha incrementado el conocimiento de la dinámica de la transmisión de M. tuberculosis dentro de una población. En el proceso han sido identificados problemas en los programas de control, lo cual ha ayudado a obtener recursos para su mejoramineto e implementación. Aún más, se ha resaltado la necesidad de continuar vigilando esta enfermedad. Otras metodologías genotípicas han sido desarrolladas a partir del conocimiento de la secuencia del genoma de M. tuberculosis. Estas metodologías genotípicas de fácil implementación y bajo costo se deben aplicar en países en vía de desarrollo, donde existe el 90% de la enfermedad, como apoyo a los programas de control de la tuberculosis. Estas herramientas permitirán conocer la dinámica de transmisión de la tuberculosis, la estructura de la población, la evolución y patogénesis de M. tuberculosis.