Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 33(11): 12099-12111, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31442074

RESUMEN

The 4 component meningococcus B vaccine (4CMenB) vaccine is the first vaccine containing recombinant proteins licensed for the prevention of invasive meningococcal disease caused by meningococcal serogroup B strains. 4CMenB contains 3 main recombinant proteins, including the Neisseria meningitidis factor H binding protein (fHbp), a lipoprotein able to bind the human factor H. To date, over 1000 aa sequences of fHbp have been identified, and they can be divided into variant groups 1, 2, and 3, which are usually not crossprotective. Nevertheless, previous characterizations of a small set (n = 10) of mAbs generated in humans after 4CMenB immunization revealed 2 human Fabs (huFabs) (1A12, 1G3) with some crossreactivity for variants 1, 2, and 3. This unexpected result prompted us to examine a much larger set of human mAbs (n = 110), with the aim of better understanding the extent and nature of crossreactive anti-fHbp antibodies. In this study, we report an analysis of the human antibody response to fHbp, by the characterization of 110 huFabs collected from 3 adult vaccinees during a 6-mo study. Although the 4CMenB vaccine contains fHbp variant 1, 13 huFabs were also found to be crossreactive with variants 2 and 3. The crystal structure of the crossreactive huFab 1E6 in complex with fHbp variant 3 was determined, revealing a novel, highly conserved epitope distinct from the epitopes recognized by 1A12 or 1G3. Further, functional characterization shows that human mAb 1E6 is able to elicit rabbit, but not human, complement-mediated bactericidal activity against meningococci displaying fHbp from any of the 3 different variant groups. This functional and structural information about the human antibody response upon 4CMenB immunization contributes to further unraveling the immunogenic properties of fHbp. Knowledge gained about the epitope profile recognized by the human antibody repertoire could guide future vaccine design.-Bianchi, F., Veggi, D., Santini, L., Buricchi, F., Bartolini, E., Lo Surdo, P., Martinelli, M., Finco, O., Masignani, V., Bottomley, M. J., Maione, D., Cozzi, R. Cocrystal structure of meningococcal factor H binding protein variant 3 reveals a new crossprotective epitope recognized by human mAb 1E6.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Factor H de Complemento/inmunología , Epítopos/inmunología , Vacunas Meningococicas/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Cristalografía por Rayos X , Epítopos/genética , Epítopos/metabolismo , Variación Genética , Humanos , Infecciones Meningocócicas/microbiología , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/administración & dosificación , Modelos Moleculares , Neisseria meningitidis/efectos de los fármacos , Neisseria meningitidis/inmunología , Neisseria meningitidis/fisiología , Unión Proteica , Conformación Proteica
2.
Proc Natl Acad Sci U S A ; 113(10): 2714-9, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26888286

RESUMEN

Factor H binding protein (fHbp) is a lipoprotein of Neisseria meningitidis important for the survival of the bacterium in human blood and a component of two recently licensed vaccines against serogroup B meningococcus (MenB). Based on 866 different amino acid sequences this protein is divided into three variants or two families. Quantification of the protein is done by immunoassays such as ELISA or FACS that are susceptible to the sequence variation and expression level of the protein. Here, selected reaction monitoring mass spectrometry was used for the absolute quantification of fHbp in a large panel of strains representative of the population diversity of MenB. The analysis revealed that the level of fHbp expression can vary at least 15-fold and that variant 1 strains express significantly more protein than variant 2 or variant 3 strains. The susceptibility to complement-mediated killing correlated with the amount of protein expressed by the different meningococcal strains and this could be predicted from the nucleotide sequence of the promoter region. Finally, the absolute quantification allowed the calculation of the number of fHbp molecules per cell and to propose a mechanistic model of the engagement of C1q, the recognition component of the complement cascade.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Neisseria meningitidis Serogrupo B/metabolismo , Secuencia de Aminoácidos , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Variación Genética , Humanos , Espectrometría de Masas/métodos , Meningitis Meningocócica/inmunología , Meningitis Meningocócica/microbiología , Vacunas Meningococicas/inmunología , Neisseria meningitidis Serogrupo B/clasificación , Neisseria meningitidis Serogrupo B/genética , Filogenia , Especificidad de la Especie
3.
Proc Natl Acad Sci U S A ; 110(35): 14330-5, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23940329

RESUMEN

Protection against influenza is mediated by neutralizing antibodies, and their induction at high and sustained titers is key for successful vaccination. Optimal B cells activation requires delivery of help from CD4(+) T lymphocytes. In lymph nodes and tonsils, T-follicular helper cells have been identified as the T cells subset specialized in helping B lymphocytes, with interleukin-21 (IL-21) and inducible costimulatory molecule (ICOS1) playing a central role for this function. We followed the expansion of antigen-specific IL-21(+) CD4(+) T cells upon influenza vaccination in adults. We show that, after an overnight in vitro stimulation, influenza-specific IL-21(+) CD4(+) T cells can be measured in human blood, accumulate in the CXCR5(-)ICOS1(+) population, and increase in frequency after vaccination. The expansion of influenza-specific ICOS1(+)IL-21(+) CD4(+) T cells associates with and predicts the rise of functionally active antibodies to avian H5N1. We also show that blood-derived CXCR5(-)ICOS1(+) CD4(+) T cells exert helper function in vitro and support the differentiation of influenza specific B cells in an ICOS1- and IL-21-dependent manner. We propose that the expansion of antigen-specific ICOS1(+)IL-21(+) CD4(+) T cells in blood is an early marker of vaccine immunogenicity and an important immune parameter for the evaluation of novel vaccination strategies.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Humanos , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/sangre , Gripe Humana/prevención & control , Interleucinas , Vacunación
4.
FASEB J ; 28(4): 1644-53, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24371123

RESUMEN

Factor H binding protein (fHbp) is one of the main antigens of the 4-component meningococcus B (4CMenB) multicomponent vaccine against disease caused by serogroup B Neisseria meningitidis (MenB). fHbp binds the complement down-regulating protein human factor H (hfH), thus resulting in immune evasion. fHbp exists in 3 variant groups with limited cross-protective responses. Previous studies have described the generation of monoclonal antibodies (mAbs) targeting variant-specific regions of fHbp. Here we report for the first time the functional characterization of two mAbs that recognize a wide panel of fHbp variants and subvariants on the MenB surface and that are able to inhibit fHbp binding to hfH. The antigenic regions targeted by the two mAbs were accurately mapped by hydrogen-deuterium exchange mass spectrometry (HDX-MS), revealing partially overlapping epitopes on the N terminus of fHbp. Furthermore, while none of the mAbs had bactericidal activity on its own, a synergistic effect was observed for each of them when tested by the human complement serum bactericidal activity (hSBA) assay in combination with a second nonbactericidal mAb. The bases underlying fHbp variant cross-reactivity, as well as inhibition of hfH binding and cooperativity effect observed for the two mAbs, are discussed in light of the mapped epitopes.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Reacciones Cruzadas/inmunología , Epítopos/inmunología , Neisseria meningitidis Serogrupo B/inmunología , Anticuerpos Monoclonales/química , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Factor H de Complemento/inmunología , Medición de Intercambio de Deuterio , Mapeo Epitopo/métodos , Epítopos/química , Epítopos/genética , Variación Genética , Humanos , Espectrometría de Masas , Infecciones Meningocócicas/inmunología , Infecciones Meningocócicas/microbiología , Vacunas Meningococicas/inmunología , Modelos Moleculares , Neisseria meningitidis Serogrupo B/genética , Neisseria meningitidis Serogrupo B/fisiología , Unión Proteica/inmunología , Conformación Proteica , Resonancia por Plasmón de Superficie
5.
Eur J Immunol ; 43(3): 641-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23238926

RESUMEN

Cross-protection against divergent strains of influenza virus is an objective of various vaccination approaches. B cells cross-neutralizing several influenza A heterosubtypes have been isolated from cultured human memory B cells (MBCs) and plasmablasts early after influenza vaccination or infection. However, a systematic assessment of the frequency of MBCs and plasmablasts in the blood of healthy individuals is lacking. Here, we show that under resting conditions about 45% of human adults never vaccinated nor exposed to avian A/H5N1 influenza have detectable circulating MBCs cross-reacting with H5N1. This proportion rises to 63.3% among subjects with a large pool of MBCs specific for seasonal H1N1 (i.e. frequency ≥1% of total IgG MBCs). Moreover, subjects with high baseline frequencies of H1N1-specific MBCs had an expansion of H5N1-specific MBCs producing H5-neutralizing antibodies already after the first dose of an MF59-adjuvanted H5N1 vaccine. These results suggest that H1N1-specific MBCs contain a subset of cells cross-reacting to H5. We propose that a proportion of human adults have a pool of H5/H1 cross-reactive MBCs that contribute to the rapid rise of the antibody response to divergent influenza strains. This may have implications on vaccination strategies aimed at counteracting future influenza pandemics.


Asunto(s)
Memoria Inmunológica , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Adulto , Animales , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Reacciones Cruzadas/inmunología , Humanos , Inmunoglobulina G/inmunología , Vacunas contra la Influenza/administración & dosificación
6.
Proc Natl Acad Sci U S A ; 108(24): 9969-74, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21628568

RESUMEN

Natural immunity against obligate and/or facultative intracellular pathogens is usually mediated by both humoral and cellular immunity. The identification of those antigens stimulating both arms of the immune system is instrumental for vaccine discovery. Although high-throughput technologies have been applied for the discovery of antibody-inducing antigens, few examples of their application for T-cell antigens have been reported. We describe how the compilation of the immunome, here defined as the pool of immunogenic antigens inducing T- and B-cell responses in vivo, can lead to vaccine candidates against Chlamydia trachomatis. We selected 120 C. trachomatis proteins and assessed their immunogenicity using two parallel high-throughput approaches. Protein arrays were generated and screened with sera from C. trachomatis-infected patients to identify antibody-inducing antigens. Splenocytes from C. trachomatis-infected mice were stimulated with 79 proteins, and the frequency of antigen-specific CD4(+)/IFN-γ(+) T cells was analyzed by flow cytometry. We identified 21 antibody-inducing antigens, 16 CD4(+)/IFN-γ(+)-inducing antigens, and five antigens eliciting both types of responses. Assessment of their protective activity in a mouse model of Chlamydia muridarum lung infection led to the identification of seven antigens conferring partial protection when administered with LTK63/CpG adjuvant. Protection was largely the result of cellular immunity as assessed by CD4(+) T-cell depletion. The seven antigens provided robust additive protection when combined in four-antigen combinations. This study paves the way for the development of an effective anti-Chlamydia vaccine and provides a general approach for the discovery of vaccines against other intracellular pathogens.


Asunto(s)
Antígenos Bacterianos/inmunología , Linfocitos B/inmunología , Vacunas Bacterianas/inmunología , Chlamydia trachomatis/inmunología , Linfocitos T/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Vacunas Bacterianas/uso terapéutico , Western Blotting , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/microbiología , Infecciones por Chlamydia/prevención & control , Chlamydia muridarum/inmunología , Chlamydia trachomatis/metabolismo , Femenino , Células HeLa , Humanos , Sueros Inmunes/inmunología , Inmunización , Interferón gamma/inmunología , Ratones , Ratones Endogámicos BALB C , Microscopía Confocal , Células TH1/inmunología
7.
Vaccines (Basel) ; 11(7)2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37515035

RESUMEN

Generalized Modules for Membrane Antigens (GMMA) are outer membrane vesicles derived from Gram-negative bacteria that can be used to design affordable subunit vaccines. GMMA have been observed to induce a potent humoral immune response in preclinical and clinical studies. In addition, in preclinical studies, it has been found that GMMA can be exploited as optimal antigen carriers for both protein and saccharide antigens, as they are able to promote the enhancement of the antigen-specific humoral immune response when the antigen is overexpressed or chemically conjugated to GMMA. Here we investigated the mechanism of this GMMA carrier effect by immunizing mice and using factor H binding protein and GMMA of Neisseria meningitidis B as an antigen-GMMA model. We confirmed that the antigen displayed on the GMMA surface increased the antigen-specific IgG production and, above all, the antibody functionality measured by the serum bactericidal activity. We found that the enhancement of the bactericidal capacity induced by GMMA carrying the antigen on the surface was associated with the increase in antibody affinity to the antigen, and with the switching toward IgG subclasses with more bactericidal potential. Thus, we conclude that the potent carrier effect of GMMA is due to their ability to promote a better quality of humoral immunity.

8.
Vaccine ; 41(3): 724-734, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36564274

RESUMEN

The candidate Adjuvant System AS37 contains a synthetic toll-like receptor agonist (TLR7a) adsorbed to alum. In a phase I study (NCT02639351), healthy adults were randomised to receive one dose of licensed alum-adjuvanted meningococcal serogroup C (MenC-CRM197) conjugate vaccine (control) or MenC-CRM197 conjugate vaccine adjuvanted with AS37 (TLR7a dose 12.5, 25, 50 or 100 µg). A subset of 66 participants consented to characterisation of peripheral whole blood transcriptomic responses, systemic cytokine/chemokine responses and multiple myeloid and lymphoid cell responses as exploratory study endpoints. Blood samples were collected pre-vaccination, 6 and 24 h post-vaccination, and 3, 7, 28 and 180 days post-vaccination. The gene expression profile in whole blood showed an early, AS37-specific transcriptome response that peaked at 24 h, increased with TLR7a dose up to 50 µg and generally resolved within one week. Five clusters of differentially expressed genes were identified, including those involved in the interferon-mediated antiviral response. Evaluation of 30 cytokines/chemokines by multiplex assay showed an increased level of interferon-induced chemokine CXCL10 (IP-10) at 24 h and 3 days post-vaccination in the AS37-adjuvanted vaccine groups. Increases in activated plasmacytoid dendritic cells (pDC) and intermediate monocytes were detected 3 days post-vaccination in the AS37-adjuvanted vaccine groups. T follicular helper (Tfh) cells increased 7 days post-vaccination and were maintained at 28 days post-vaccination, particularly in the AS37-adjuvanted vaccine groups. Moreover, most of the subjects that received vaccine containing 25, 50 and 100 µg TLR7a showed an increased MenC-specific memory B cell responses versus baseline. These data show that the adsorption of TLR7a to alum promotes an immune signature consistent with TLR7 engagement, with up-regulation of interferon-inducible genes, cytokines and frequency of activated pDC, intermediate monocytes, MenC-specific memory B cells and Tfh cells. TLR7a 25-50 µg can be considered the optimal dose for AS37, particularly for the adjuvanted MenC-CRM197 conjugate vaccine.


Asunto(s)
Hidróxido de Aluminio , Vacunas Meningococicas , Adulto , Humanos , Interferones , Receptor Toll-Like 7 , Antivirales , Vacunas Conjugadas , Adyuvantes Inmunológicos , Citocinas , Análisis de Sistemas
9.
EMBO Mol Med ; 13(6): e14035, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33998144

RESUMEN

Respiratory syncytial virus (RSV) is the leading cause of death from lower respiratory tract infection in infants and children, and is responsible for considerable morbidity and mortality in older adults. Vaccines for pregnant women and elderly which are in phase III clinical studies target people with pre-existing natural immunity against RSV. To investigate the background immunity which will be impacted by vaccination, we single cell-sorted human memory B cells and dissected functional and genetic features of neutralizing antibodies (nAbs) induced by natural infection. Most nAbs recognized both the prefusion and postfusion conformations of the RSV F-protein (cross-binders) while a smaller fraction bound exclusively to the prefusion conformation. Cross-binder nAbs used a wide array of gene rearrangements, while preF-binder nAbs derived mostly from the expansion of B-cell clonotypes from the IGHV1 germline. This latter class of nAbs recognizes an epitope located between Site Ø, Site II, and Site V on the F-protein, identifying an important site of pathogen vulnerability.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Anciano , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Femenino , Humanos , Embarazo , Proteínas Virales de Fusión/genética
10.
Comput Struct Biotechnol J ; 19: 3664-3672, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34257845

RESUMEN

Affinity measurement is a fundamental step in the discovery of monoclonal antibodies (mAbs) and of antigens suitable for vaccine development. Innovative affinity assays are needed due to the low throughput and/or limited dynamic range of available technologies. We combined microfluidic technology with quantum-mechanical scattering theory, in order to develop a high-throughput, broad-range methodology to measure affinity. Fluorescence intensity profiles were generated for out-of-equilibrium solutions of labelled mAbs and their antigen-binding fragments migrating along micro-columns with immobilized cognate antigen. Affinity quantification was performed by computational data analysis based on the Landau probability distribution. Experiments using a wide array of human or murine antibodies against bacterial or viral, protein or polysaccharide antigens, showed that all the antibody-antigen capture profiles (n = 841) generated at different concentrations were accurately described by the Landau distribution. A scale parameter W, proportional to the full-width-at-half-maximum of the capture profile, was shown to be independent of the antibody concentration. The W parameter correlated significantly (Pearson's r [p-value]: 0.89 [3 × 10-8]) with the equilibrium dissociation constant KD, a gold-standard affinity measure. Our method showed good intermediate precision (median coefficient of variation: 5%) and a dynamic range corresponding to KD values spanning from ~10-7 to ~10-11 Molar. Relative to assays relying on antibody-antigen equilibrium in solution, even when they are microfluidic-based, the method's turnaround times were decreased from 2 days to 2 h. The described computational modelling of antibody capture profiles represents a fast, reproducible, high-throughput methodology to accurately measure a broad range of antibody affinities in very low volumes of solution.

11.
NPJ Vaccines ; 6(1): 78, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021167

RESUMEN

Differences in innate immune 'imprinting' between vaccine adjuvants may mediate dissimilar effects on the quantity/quality of persisting adaptive responses. We compared antibody avidity maturation, antibody/memory B cell/CD4+ T cell response durability, and recall responses to non-adjuvanted fractional-dose antigen administered 1-year post-immunization (Day [D]360), between hepatitis B vaccines containing Adjuvant System (AS)01B, AS01E, AS03, AS04, or Alum (NCT00805389). Both the antibody and B cell levels ranked similarly (AS01B/E/AS03 > AS04 > Alum) at peak response, at D360, and following their increases post-antigen recall (D390). Proportions of high-avidity antibodies increased post-dose 2 across all groups and persisted at D360, but avidity maturation appeared to be more strongly promoted by AS vs. Alum. Post-antigen recall, frequencies of subjects with high-avidity antibodies increased only markedly in the AS groups. Among the AS, total antibody responses were lowest for AS04. However, proportions of high-avidity antibodies were similar between groups, suggesting that MPL in AS04 contributes to avidity maturation. Specific combinations of immunoenhancers in the AS, regardless of their individual nature, increase antibody persistence and avidity maturation.

12.
Vaccine ; 38(50): 7916-7927, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33131932

RESUMEN

Respiratory syncytial virus (RSV) is the major cause of acute lower respiratory illness in children of less than 5 years of age which usually results in hospitalization or even in death. Vaccine development is hampered in consequence of a failed vaccine trial with fatalities in the 1960s. Even though research has been more focused on the RSV fusion protein in its pre-fusion conformation, maternal vaccination with post-fusion protein (post F) was considered as a promising vaccine strategy for passive immunization of babies, because post F preserves very potent neutralizing epitopes. We extensively analyzed post F-binding B cell receptor (BCR) repertoires of three vaccinees who received a post F-subunit vaccine in the context of a first-in-human, Phase 1, randomized, observer-blind, placebo-controlled clinical trial (ClinicalTrials.gov Identifier: NCT02298179). In order to compare the vaccine-induced BCR repertoires with BCR repertoires induced by natural infection, we also analyzed pre F- and post F-binding BCRs isolated from a healthy blood donor with relatively high F-binding memory B cell (MBC) frequencies. Analysis of the vaccine-induced repertoires revealed that preferentially VH4-encoded BCRs were expanded in response to vaccination. Estimation of antigen-driven selection further demonstrated that expanded BCRs accumulated positively selected replacement mutations which substantiated the hypothesis that post F-vaccination induces diversification of VH4-encoded BCRs in germinal centers. Comparison of the vaccine-induced BCR repertoires with clonally related pre and post F-binding BCRs of the healthy blood donor suggested that the vaccine expanded pre/post F cross-reactive MBCs. Interestingly, several vaccine-induced BCRs shared stereotypic VDJ gene junctions with known neutralizing Abs. Once expressed for functional characterization, the selected monoclonal Abs demonstrated the predicted neutralization activities in plaque reduction neutralization assays indicating that the post F-vaccine induced expansion of neutralizing BCRs.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Niño , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Receptores de Antígenos de Linfocitos B/genética , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunación , Vacunas de Subunidad , Proteínas Virales de Fusión/genética
13.
Infect Immun ; 77(9): 4168-76, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19596772

RESUMEN

Despite several decades of intensive studies, no vaccines against Chlamydia trachomatis, an intracellular pathogen causing serious ocular and urogenital diseases, are available yet. Infection-induced immunity in both animal models and humans strongly supports the notion that for a vaccine to be effective a strong CD4(+) Th1 immune response should be induced. In the course of our vaccine screening program based on the selection of chlamydial proteins eliciting cell-mediated immunity, we have found that CT043, a protein annotated as hypothetical, induces CD4(+) Th1 cells both in chlamydia-infected mice and in human patients with diagnosed C. trachomatis genital infection. DNA priming/protein boost immunization with CT043 results in a 2.6-log inclusion-forming unit reduction in the murine lung infection model. Sequence analysis of CT043 from C. trachomatis human isolates belonging to the most representative genital serovars revealed a high degree of conservation, suggesting that this antigen could provide cross-serotype protection. Therefore, CT043 is a promising vaccine candidate against C. trachomatis infection.


Asunto(s)
Antígenos Bacterianos/inmunología , Infecciones por Chlamydia/inmunología , Chlamydia trachomatis/inmunología , Células TH1/inmunología , Animales , Vacunas Bacterianas/inmunología , Chlamydia muridarum/inmunología , Femenino , Enfermedades de los Genitales Femeninos/inmunología , Humanos , Inmunización , Interferón gamma/biosíntesis , Ratones , Ratones Endogámicos BALB C , Porinas/inmunología
14.
Cancer Res ; 67(15): 7368-77, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17671207

RESUMEN

Hypoxia is a prominent feature of solid tumor development and is known to stimulate mitochondrial ROS (mROS), which, in turn, can activate hypoxia-inducible transcription factor-1alpha and nuclear factor-kappaB (NF-kappaB). Because NF-kappaB plays a central role in carcinogenesis, we examined the mechanism of mROS-mediated NF-kappaB activation and the fate of cancer cells during hypoxia after mitochondrial reduced glutathione (mGSH) depletion. Hypoxia generated mROS in hepatoma (HepG2, H35), neuroblastoma (SH-SY5Y), and colon carcinoma (DLD-1) cells, leading to hypoxia-inducible transcription factor-1alpha-dependent gene expression and c-Src activation that was prevented in cells expressing a redox-insensitive c-Src mutant (C487A). c-Src stimulation activated NF-kappaB without IkappaB-alpha degradation due to IkappaB-alpha tyrosine phosphorylation that was inhibited by rotenone/TTFA or c-Src antagonism. The c-Src-NF-kappaB signaling contributed to the survival of cells during hypoxia as c-Src inhibition or p65 down-regulation by small interfering RNA-sensitized HepG2 cells to hypoxia-induced cell death. Moreover, selective mGSH depletion resulted in an accelerated and enhanced mROS generation by hypoxia that killed SH-SY5Y and DLD-1 cells without disabling the c-Src-NF-kappaB pathway. Thus, although mROS promote cell survival by NF-kappaB activation via c-Src, mROS overgeneration may be exploited to sensitize cancer cells to hypoxia.


Asunto(s)
Muerte Celular/efectos de los fármacos , Hipoxia de la Célula , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Oxidantes/farmacología , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Western Blotting , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Ensayo de Cambio de Movilidad Electroforética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Immunoblotting , Inmunoprecipitación , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Mutagénesis Sitio-Dirigida , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Fosforilación , Proteínas Proto-Oncogénicas pp60(c-src)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas pp60(c-src)/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Transfección , Células Tumorales Cultivadas , Tirosina/metabolismo
15.
Mol Cell Biol ; 25(15): 6391-403, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16024778

RESUMEN

Src tyrosine kinases are central components of adhesive responses and are required for cell spreading onto the extracellular matrix. Among other intracellular messengers elicited by integrin ligation are reactive oxygen species, which act as synergistic mediators of cytoskeleton rearrangement and cell spreading. We report that after integrin ligation, the tyrosine kinase Src is oxidized and activated. Src displays an early activation phase, concurrent with focal adhesion formation and driven mainly by Tyr527 dephosphorylation, and a late phase, concomitant with reactive oxygen species production, cell spreading, and integrin-elicited kinase oxidation. In addition, our results suggest that reactive oxygen species are key mediators of in vitro and in vivo v-Src tumorigenic properties, as both antioxidant treatments and the oxidant-insensitive C245A and C487A Src mutants greatly decrease invasivity, serum-independent and anchorage-independent growth, and tumor onset. Therefore we propose that, in addition to the known phosphorylation/dephosphorylation circuitry, redox regulation of Src activity is required during both cell attachment to the extracellular matrix and tumorigenesis.


Asunto(s)
Proliferación Celular , Líquido Intracelular/enzimología , Especies Reactivas de Oxígeno/metabolismo , Familia-src Quinasas/metabolismo , Animales , Adhesión Celular/fisiología , Cisteína/metabolismo , Activación Enzimática , Matriz Extracelular/enzimología , Femenino , Integrinas/metabolismo , Líquido Intracelular/metabolismo , Ratones , Ratones Desnudos , Células 3T3 NIH , Proteína Oncogénica pp60(v-src)/metabolismo , Oxidación-Reducción
16.
Hum Vaccin Immunother ; 14(1): 45-58, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29172945

RESUMEN

Despite high vaccination coverage worldwide, pertussis has re-emerged in many countries. This randomized, controlled, observer-blind phase I study and extension study in Belgium (March 2012-June 2015) assessed safety and immunogenicity of investigational acellular pertussis vaccines containing genetically detoxified pertussis toxin (PT) (NCT01529645; NCT02382913). 420 healthy adults (average age: 26.8 ± 5.5 years, 60% female) were randomized to 1 of 10 vaccine groups: 3 investigational aP vaccines (containing pertussis antigens PT, filamentous hemagglutinin [FHA] and pertactin [PRN] at different dosages), 6 investigational TdaP (additionally containing tetanus toxoid [TT] and diphtheria toxoid [DT]), and 1 TdaP comparator containing chemically inactivated PT. Antibody responses were evaluated on days 1, 8, 30, 180, 365, and approximately 3 years post-booster vaccination. Cell-mediated immune responses and PT neutralization were evaluated in a subset of participants in pre-selected groups. Local and systemic adverse events (AEs), and unsolicited AEs were collected through day 7 and 30, respectively; serious AEs and AEs leading to study withdrawal were collected through day 365 post-vaccination. Antibody responses against pertussis antigens peaked at day 30 post-vaccination and then declined but remained above baseline level at approximately 3 years post-vaccination. Responses to FHA and PRN were correlated to antigen dose. Antibody responses specific to PT, toxin neutralization activity and persistence induced by investigational formulations were similar or significantly higher than the licensed vaccine, despite lower PT doses. Of 15 serious AEs, none were considered vaccination-related; 1 led to study withdrawal (premature labor, day 364; aP4 group). This study confirmed the potential benefits of genetically detoxified PT antigen. All investigational study formulations were well tolerated.


Asunto(s)
Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/administración & dosificación , Inmunización Secundaria/métodos , Toxina del Pertussis/inmunología , Vacuna contra la Tos Ferina/administración & dosificación , Vacunación/métodos , Tos Ferina/prevención & control , Adulto , Anticuerpos Antibacterianos/análisis , Bélgica , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/efectos adversos , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/genética , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/inmunología , Femenino , Humanos , Inmunidad Celular , Inmunogenicidad Vacunal , Masculino , Toxina del Pertussis/genética , Vacuna contra la Tos Ferina/efectos adversos , Vacuna contra la Tos Ferina/genética , Vacuna contra la Tos Ferina/inmunología , Resultado del Tratamiento , Tos Ferina/sangre , Tos Ferina/inmunología , Adulto Joven
17.
Antioxid Redox Signal ; 9(1): 1-24, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17115885

RESUMEN

In addition to protein phosphorylation, redox-dependent posttranslational modification of proteins is emerging as a key signaling system, conserved throughout evolution, and influencing many aspects of cellular homeostasis. Recent data have provided new insight about the interplay between phosphorylation- and redox-dependent signaling, and reactive oxygen species have been included among intracellular signal transducers of growth factor and extracellular matrix receptors. Both tyrosine phosphorylation and thiol oxidation are reversible and dynamic, and this review will particularly focus on the cross-talk between these posttranslational protein regulatory means. Although these modifications share their reversibility, their effects on enzymatic activity of protein tyrosine phosphatases (PTPs) and protein tyrosine kinases (PTKs) may be even opposite. Indeed, while tyrosine phosphorylation is frequently correlated to enzyme activation, thiol oxidation leads to inactivation of PTPs and to superactivation of PTKs. Several papers describe that both these modifications occur during the same input, (i.e., cell proliferation and motility induced by numerous growth factors and cytokines). The review will discuss several aspects of phosphorylation\oxidation interplay, describing both convergent and divergent features of the integrated and coordinated function of PTPs and PTKs during signaling.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Procesamiento Proteico-Postraduccional , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Tirosina/metabolismo , Animales , Antioxidantes/farmacología , Regulación hacia Abajo , Humanos , Ligandos , Modelos Biológicos , Oxidación-Reducción , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Receptor Cross-Talk , Transducción de Señal , Regulación hacia Arriba
18.
Cancer Res ; 62(22): 6489-99, 2002 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-12438242

RESUMEN

Beta-catenin plays a dual role as a major constituent of cadherin-based adherens junctions and also as a transcriptional coactivator. In normal ephitelial cells, at adherens junction level, beta-catenin links cadherins to the actin cytoskeleton. The structure of adherens junctions is dynamically regulated by tyrosine phosphorylation. In particular, cell-cell adhesion can be negatively regulated through the tyrosine phosphorylation of beta-catenin. Furthermore, the loss of beta-catenin-cadherin association has been correlated with the transition from a benign tumor to an invasive, metastatic cancer. Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) is a ubiquitous PTP implicated in the regulation of mitosis and cytoskeleton rearrangement. Here we demonstrate that the amount of free cytoplasmic beta-catenin is decreased in NIH3T3, which overexpresses active LMW-PTP, and this results in a stronger association between cadherin complexes and the actin-based cytoskeleton with respect to control cells. Confocal microscopy analysis shows that beta-catenin colocalizes with LMW-PTP at the plasma membrane. Furthermore, we provide evidence that beta-catenin is able to associate with LMW-PTP both in vitro and in vivo. Moreover, overexpression of active LMW-PTP strongly potentiates cadherin-mediated cell-cell adhesion, whereas a dominant-negative form of LMW-PTP induces the opposite phenotype, both in NIH3T3 and in MCF-7 carcinoma cells. On the basis of these results, we propose that the stability of cell-cell contacts at the adherens junction level is positively influenced by LMW-PTP expression, mainly because of the beta-catenin and LMW-PTP interaction at the plasma membrane level with consequent dephosphorylation.


Asunto(s)
Cadherinas/fisiología , Comunicación Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Transactivadores/metabolismo , Células 3T3/citología , Células 3T3/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Adhesión Celular/fisiología , Citoplasma/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Ratones , Peso Molecular , Oxidación-Reducción , Fosforilación , Proteínas Tirosina Fosfatasas/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Células Tumorales Cultivadas , beta Catenina
19.
Ital J Biochem ; 54(3-4): 258-67, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16688935

RESUMEN

Satellite cells are quiescent cells that can be induced to proliferate by a variety of stimuli such as injury and exercise, providing in this way a source of new myoblasts that repopulate the damaged muscle. It is well known that, as senescence progresses, the muscle regenerative potential progressively diminishes, but the molecular mechanisms underlying this process are not yet completely defined. Many growth factors, including Platelet Derived Growth Factor (PDGF-BB)*, have been associated to satellite cells activation, acting as potent mitogenic agents for these cells. The aim of this study is to explore if the diminished response of senescent myoblasts to growth stimuli could be due to the inability to receive and transduce hormonal signals. Herein, we demonstrate that that although PDGF-r expression is down-regulated during senescence, the receptor is fully able to be phosphorylated and to transmit the signal. Although senescent myoblasts display increased level of phosphotyrosine phosphatases (PTPs), neither the PDGF receptor (PDGF-r) phosphorylation level nor the citosolic signal transduction machinery is affected. Indeed, we demonstrated that senescent human myoblasts are able to initiate a proper mitogenic signalling cascade, since the activation of mitogen-activated protein kinases (MAPK) and phosphatydil inositole 3 kinase (PI-3K) pathways is similar in young and senescent cells. Our data underline that, despite a conserved capability to activate PDGF-r after agonist stimulation and a functional signal transduction machinery, the mitogenic signal initiated by growth factors in senescent cells does not lead to cell division, being unable to overcome the cell cycle block, likely caused by the accumulation of the inhibitor p21WAF1.


Asunto(s)
Senescencia Celular , Mitógenos/farmacología , Mioblastos Esqueléticos/citología , Transducción de Señal , Becaplermina , Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular/fisiología , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Lactante , Mitógenos/metabolismo , Músculos/fisiología , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-sis , Transducción de Señal/efectos de los fármacos
20.
PLoS One ; 8(8): e70620, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23976947

RESUMEN

Understanding the impact that human memory B-cells (MBC), primed by previous infections or vaccination, exert on neutralizing antibody responses against drifted influenza hemagglutinin (HA) is key to design best protective vaccines. A major obstacle to these studies is the lack of practical tools to analyze HA-specific MBCs in human PBMCs ex vivo. We report here an efficient method to identify MBCs carrying HA-specific BCR in frozen PBMC samples. By using fluorochrome-tagged recombinant HA baits, and vaccine antigens from mismatched influenza strains to block BCR-independent binding, we developed a protocol suitable for quantitative, functional and molecular analysis of single MBCs specific for HA from up to two different influenza strains in the same tube. This approach will permit to identify the naive and MBC precursors of plasmablasts and novel MBCs appearing in the blood following infection or vaccination, thus clarifying the actual contribution of pre-existing MBCs in antibody responses against novel influenza viruses. Finally, this protocol can allow applying high throughput deep sequencing to analyze changes in the repertoire of HA⁺ B-cells in longitudinal samples from large cohorts of vaccinees and infected subjects with the ultimate goal of understanding the in vivo B-cell dynamics driving the evolution of broadly cross-protective antibody responses.


Asunto(s)
Linfocitos B/citología , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Memoria Inmunológica , Subtipo H1N1 del Virus de la Influenza A/química , Subtipo H3N2 del Virus de la Influenza A/química , Virus de la Influenza B/química , Gripe Humana/inmunología , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Separación Celular/métodos , Reacciones Cruzadas , Citometría de Flujo/métodos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología , Gripe Humana/virología , Unión Proteica , Anticuerpos de Dominio Único/biosíntesis , Anticuerpos de Dominio Único/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA