Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Neurosci ; 59(10): 2483-2501, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38532289

RESUMEN

Dopaminergic neurons of the substantia nigra exist in a persistent state of vulnerability resulting from high baseline oxidative stress, high-energy demand, and broad unmyelinated axonal arborisations. Impairments in the storage of dopamine compound this stress because of cytosolic reactions that transform the vital neurotransmitter into an endogenous neurotoxicant, and this toxicity is thought to contribute to the dopamine neuron degeneration that occurs Parkinson's disease. We have previously identified synaptic vesicle glycoprotein 2C (SV2C) as a modifier of vesicular dopamine function, demonstrating that genetic ablation of SV2C in mice results in decreased dopamine content and evoked dopamine release in the striatum. Here, we adapted a previously published in vitro assay utilising false fluorescent neurotransmitter 206 (FFN206) to visualise how SV2C regulates vesicular dopamine dynamics and determined that SV2C promotes the uptake and retention of FFN206 within vesicles. In addition, we present data indicating that SV2C enhances the retention of dopamine in the vesicular compartment with radiolabelled dopamine in vesicles isolated from immortalised cells and from mouse brain. Further, we demonstrate that SV2C enhances the ability of vesicles to store the neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) and that genetic ablation of SV2C results in enhanced 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced vulnerability in mice. Together, these findings suggest that SV2C functions to enhance vesicular storage of dopamine and neurotoxicants and helps maintain the integrity of dopaminergic neurons.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Glicoproteínas de Membrana , Proteínas del Tejido Nervioso , Vesículas Sinápticas , Animales , Dopamina/metabolismo , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Ratones Endogámicos C57BL , Humanos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Masculino
2.
Neurotoxicology ; 103: 87-95, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876425

RESUMEN

Environmental and genetic risk factors, and their interactions, contribute significantly to the etiology of neurodevelopmental disorders (NDDs). Recent epidemiology studies have implicated pyrethroid pesticides as an environmental risk factor for autism and developmental delay. Our previous research showed that low-dose developmental exposure to the pyrethroid pesticide deltamethrin in mice caused male-biased changes in the brain and in NDD-relevant behaviors in adulthood. Here, we used a metabolomics approach to determine the broadest possible set of metabolic changes in the adult male mouse brain caused by low-dose pyrethroid exposure during development. Using a litter-based design, we exposed mouse dams during pregnancy and lactation to deltamethrin (3 mg/kg or vehicle every 3 days) at a concentration well below the EPA-determined benchmark dose used for regulatory guidance. We raised male offspring to adulthood and collected whole brain samples for untargeted high-resolution metabolomics analysis. Developmentally exposed mice had disruptions in 116 metabolites which clustered into pathways for folate biosynthesis, retinol metabolism, and tryptophan metabolism. As a cross-validation, we integrated metabolomics and transcriptomics data from the same samples, which confirmed previous findings of altered dopamine signaling. These results suggest that pyrethroid exposure during development leads to disruptions in metabolism in the adult brain, which may inform both prevention and therapeutic strategies.


Asunto(s)
Encéfalo , Nitrilos , Efectos Tardíos de la Exposición Prenatal , Piretrinas , Animales , Piretrinas/toxicidad , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Femenino , Masculino , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo , Embarazo , Ratones , Nitrilos/toxicidad , Insecticidas/toxicidad , Ratones Endogámicos C57BL , Metabolómica
3.
Nat Commun ; 15(1): 117, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168044

RESUMEN

Centrioles are subcellular organelles found at the cilia base with an evolutionarily conserved structure and a shock absorber-like function. In sperm, centrioles are found at the flagellum base and are essential for embryo development in basal animals. Yet, sperm centrioles have evolved diverse forms, sometimes acting like a transmission system, as in cattle, and sometimes becoming dispensable, as in house mice. How the essential sperm centriole evolved to become dispensable in some organisms is unclear. Here, we test the hypothesis that this transition occurred through a cascade of evolutionary changes to the proteins, structure, and function of sperm centrioles and was possibly driven by sperm competition. We found that the final steps in this cascade are associated with a change in the primary structure of the centriolar inner scaffold protein FAM161A in rodents. This information provides the first insight into the molecular mechanisms and adaptive evolution underlying a major evolutionary transition within the internal structure of the mammalian sperm neck.


Asunto(s)
Centriolos , Semen , Masculino , Animales , Bovinos , Ratones , Centriolos/metabolismo , Espermatozoides/metabolismo , Proteínas/metabolismo , Cilios , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA