Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 57(5): 769-783, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25620564

RESUMEN

Polycomb Group (PcG) proteins maintain transcriptional repression throughout development, mostly by regulating chromatin structure. Polycomb Repressive Complex 2 (PRC2), a component of the Polycomb machinery, is responsible for the methylation of histone H3 lysine 27 (H3K27me2/3). Jarid2 was previously identified as a cofactor of PRC2, regulating PRC2 targeting to chromatin and its enzymatic activity. Deletion of Jarid2 leads to impaired orchestration of gene expression during cell lineage commitment. Here, we reveal an unexpected crosstalk between Jarid2 and PRC2, with Jarid2 being methylated by PRC2. This modification is recognized by the Eed core component of PRC2 and triggers an allosteric activation of PRC2's enzymatic activity. We show that Jarid2 methylation is important to promote PRC2 activity at a locus devoid of H3K27me3 and for the correct deposition of this mark during cell differentiation. Our results uncover a regulation loop where Jarid2 methylation fine-tunes PRC2 activity depending on the chromatin context.


Asunto(s)
Diferenciación Celular , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Animales , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Células HEK293 , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Lisina/genética , Lisina/metabolismo , Metilación , Ratones Noqueados , Modelos Genéticos , Mutación , Complejo Represivo Polycomb 2/genética , Interferencia de ARN
2.
Acc Chem Res ; 50(12): 2968-2975, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29172443

RESUMEN

Living organisms have to maintain a stable balance in molecules and ions in the changing environment in which they are living, a process known as homeostasis. At the level of cells, the plasma membrane has a major role in homeostasis, since this hydrophobic film prevents passive diffusion of large and hydrophilic molecules between the extracellular and intracellular milieu. Living organisms have evolved with highly sophisticated transport systems to control exchanges across this barrier: import of nutrients and fuel essential for their survival; recognition of chemical or physical messengers allowing information interchanges with surrounding cells. Besides specialized proteins, endocytosis mechanisms at the level of the lipid bilayer can transport molecules from the outside across the cell membrane, in an energy-dependent manner. The cell membrane is highly heterogeneous in its molecular composition (tens of different lipids, proteins, polysaccharides, and combinations of these) and dynamic with bending, deformation, and elastic properties that depend on the local composition of membrane domains. Many viruses, microorganisms, and toxins exploit the plasma membrane to enter into cells. Chemists develop strategies to target the plasma membrane with molecules capable of circumventing this hydrophobic barrier, in particular to transport and deliver nonpermeable drugs in cells for biotechnological or pharmaceutical purposes. Drug delivery systems are numerous and include lipid-, sugar-, protein-, and peptide-based delivery systems, since these biomolecules generally have good biocompatibility, biodegradability, environmental sustainability, cost effectiveness, and availability. Among those, cell-penetrating peptides (CPPs), reported for the first time in the early 1990s, are attracting major interest not only as potential drug delivery systems but also at the level of fundamental research. It was indeed demonstrated very early that these peptides, which generally correspond to highly cationic sequences, can still cross the cell membrane at 4 °C, a temperature at which all active transport and endocytosis pathways are totally inhibited. Therefore, how these charged hydrophilic peptides cross the hydrophobic membrane barrier is of utmost interest as a pure basic and physicochemical question. In this Account, we focus on cationic cell-penetrating peptides (CPPs) and the way they cross cell membranes. We summarize the history of this field that emerged around 20 years ago. CPPs were indeed first identified as protein-transduction domains from the human immunodeficiency virus (HIV) TAT protein and the Antennapedia homeoprotein, a transcription factor from Drosophila. We highlight our contribution to the elucidation of CPP internalization pathways, in particular translocation, which implies perturbation and reorganization of the lipid bilayer, and endocytosis depending on sulfated glycosaminoglycans. We show a particular role of Trp (indole side chain) and Arg (guanidinium side chain), which are essential amino acids for CPP internalization. Interactions with the cell-surface are not only Coulombic; H-bonds and hydrophobic interactions contribute also significantly to CPP entry. The capacity of CPPs to cross cell membrane is not related to their strength of membrane binding. Finally, we present optimized methods based on mass spectrometry and fluorescence spectroscopy that allow unequivocal quantification of CPPs inside cells or bound to the outer leaflet of the membrane, and discuss some limitations of the technique of flow cytometry that we have recently highlighted.


Asunto(s)
Membrana Celular/metabolismo , Péptidos de Penetración Celular/metabolismo , Oligopéptidos/metabolismo , Secuencia de Aminoácidos , Animales , Membrana Celular/química , Péptidos de Penetración Celular/química , Endocitosis , Fluorometría , Glicosaminoglicanos/química , Cinética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Oligopéptidos/química , Transporte de Proteínas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Termodinámica
3.
Anal Bioanal Chem ; 409(15): 3767-3777, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28389916

RESUMEN

Histone lysine methylation is associated with essential biological functions like transcription activation or repression, depending on the position and the degree of methylation. This post-translational modification is introduced by protein lysine methyltransferases (KMTs) which catalyze the transfer of one to three methyl groups from the methyl donor S-adenosyl-L-methionine (AdoMet) to the amino group on the side chain of lysines. The regulation of protein lysine methylation plays a primary role not only in the basic functioning of normal cells but also in various pathologies and KMT deregulation is associated with diseases including cancer. These enzymes are therefore attractive targets for the development of new antitumor agents, and there is still a need for direct methodology to screen, identify, and characterize KMT inhibitors. We report here a simple and robust in vitro assay to quantify the enzymatic methylation of KMT by MALDI-TOF mass spectrometry. Following this protocol, we can monitor the methylation events over time on a peptide substrate. We detect in the same spectrum the modified and unmodified substrates, and the ratios of both signals are used to quantify the amount of methylated substrate. We first demonstrated the validity of the assay by determining inhibition parameters of two known inhibitors of the KMT SET7/9 ((R)-PFI-2 and sinefungin). Next, based on structural comparison with these inhibitors, we selected 42 compounds from a chemical library. We applied the MALDI-TOF assay to screen their activity as inhibitors of the KMT SET7/9. This study allowed us to determine inhibition constants as well as kinetic parameters of a series of SET7/9 inhibitors and to initiate a structure activity discussion with this family of compounds. This assay is versatile and can be easily adapted to other KMT substrates and enzymes as well as automatized.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Adenosina/análogos & derivados , Adenosina/farmacología , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Metilación/efectos de los fármacos , Pirrolidinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Sulfonamidas/farmacología , Tetrahidroisoquinolinas/farmacología
4.
Biochim Biophys Acta ; 1848(2): 593-602, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25445669

RESUMEN

Cell-penetrating peptides (CPP) are able to efficiently transport cargos across cell membranes without being cytotoxic to cells, thus present a great potential in drug delivery and diagnosis. While the role of cationic residues in CPPs has been well studied, that of Trp is still not clear. Herein 7 peptide analogs of RW9 (RRWWRRWRR, an efficient CPP) were synthesized in which Trp were systematically replaced by Phe residues. Quantification of cellular uptake reveals that substitution of Trp by Phe strongly reduces the internalization of all peptides despite the fact that they strongly accumulate in the cell membrane. Cellular internalization and biophysical studies show that not only the number of Trp residues but also their positioning in the helix and the size of the hydrophobic face they form are important for their internalization efficacy, the highest uptake occurring for the analog with 3 Trp residues. Using CD and ATR-FTIR spectroscopy we observe that all peptides became structured in contact with lipids, mainly in α-helix. Intrinsic tryptophan fluorescence studies indicate that all peptides partition in the membrane in about the same manner (Kp~10(5)) and that they are located just below the lipid headgroups (~10 Å) with slightly different insertion depths for the different analogs. Plasmon Waveguide Resonance studies reveal a direct correlation between the number of Trp residues and the reversibility of the interaction following membrane washing. Thus a more interfacial location of the CPP renders the interaction with the membrane more adjustable and transitory enhancing its internalization ability.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Péptidos de Penetración Celular/química , Fosfatidilcolinas/química , Fosfatidilgliceroles/química , Triptófano/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Células CHO , Membrana Celular/química , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/metabolismo , Péptidos de Penetración Celular/farmacología , Cricetulus , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Fenilalanina/química , Unión Proteica , Estructura Secundaria de Proteína , Transporte de Proteínas , Electricidad Estática , Relación Estructura-Actividad
5.
J Pept Sci ; 22(5): 360-7, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27086749

RESUMEN

A backbone amide bond protecting group, 2-hydroxy-4-methoxy-5-nitrobenzyl (Hmnb), improved the synthesis of aggregation and aspartimide-prone peptides. Introduction of Hmnb is automated and carried out during peptide assembly by addition of 4-methoxy-5-nitrosalicylaldehyde to the peptidyl-resin and on-resin reduction to the secondary amine. Acylation of the hindered secondary amine is aided by the formation of an internal nitrophenol ester that undergoes a favourable O,N intramolecular acyl transfer. This activated ester participates in the coupling and generally gives complete reaction with standard coupling conditions. Hmnb is easily available in a single preparative step from commercially available material. Different methods for removing the amide protecting group were explored. The protecting group is labile to acidolysis, following reduction of the nitro group to the aniline. The two main uses of backbone protection of preventing aspartimide formation and of overcoming difficult sequences are demonstrated, first with the synthesis of a challenging aspartimide-prone test sequence and then with the classic difficult sequence ACP (65-74) and a 23-mer homopolymer of polyalanine.


Asunto(s)
Amidas/química , Ácido Aspártico/análogos & derivados , Péptidos/síntesis química , Acilación , Secuencia de Aminoácidos , Ácido Aspártico/química , Estructura Molecular , Nitrobencenos/química , Péptidos/química , Técnicas de Síntesis en Fase Sólida
6.
Cell Mol Life Sci ; 72(4): 809-20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25112713

RESUMEN

Among non-invasive cell delivery strategies, cell-penetrating peptide (CPP) vectors represent interesting new tools. To get fundamental knowledge about the still debated internalisation mechanisms of these peptides, we modified the membrane content of cells, typically by hydrolysis of sphingomyelin or depletion of cholesterol from the membrane outer leaflet. We quantified and visualised the effect of these viable cell surface treatments on the internalisation efficiency of different CPPs, among which the most studied Tat, R9, penetratin and analogues, that all carry the N-terminal biotin-Gly4 tag cargo. Under these cell membrane treatments, only penetratin and R6W3 underwent a massive glycosaminoglycan (GAG)-dependent entry in cells. Internalisation of the other peptides was only slightly increased, similarly in the absence or the presence of GAGs for R9, and only in the presence of GAGs for Tat and R6L3. Ceramide formation (or cholesterol depletion) is known to lead to the reorganisation of membrane lipid domains into larger platforms, which can serve as a trap and cluster receptors. These results show that GAG clustering, enhanced by formation of ceramide, is efficiently exploited by penetratin and R6W3, which contains Trp residues in their sequence but not Tat, R9 and R6L3. Hence, these data shed new lights on the differences in the internalisation mechanism and pathway of these peptides that are widely used in delivery of cargo molecules.


Asunto(s)
Péptidos de Penetración Celular/metabolismo , Colesterol/metabolismo , Glicosaminoglicanos/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Péptidos de Penetración Celular/química , Ceramidas/análisis , Cricetinae , Cricetulus , Endocitosis , Microscopía Confocal , Datos de Secuencia Molecular , Esfingomielinas/metabolismo , Triptófano/química
7.
Biochem J ; 472(1): 97-109, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26371374

RESUMEN

The ERα (oestrogen receptor α)-derived peptide ERα17p activates rapid signalling events in breast carcinoma cells under steroid-deprived conditions. In the present study, we investigated its effects in ELT3 leiomyoma cells under similar conditions. We show that it activates ERK1/2 (extracellular-signal-regulated kinase 1/2), the Gαi protein, the trans-activation of EGFR (epidermal growth factor receptor) and, finally, cell proliferation. It is partially internalized in cells and induces membrane translocation of ß-arrestins. The activation of ERK1/2 is abolished by the GPR30 (G-protein-coupled receptor 30) antagonist G15 and GPR30 siRNA. When ERα is down-regulated by prolonged treatment with E2 (oestradiol) or specific ERα siRNA, the peptide response is blunted. Thus the simultaneous presence of GPR30 and ERα is required for the action of ERα17p. In addition, its PLM sequence, which interferes with the formation of the ERα-calmodulin complex, appears to be requisite for the phosphorylation of ERK1/2 and cell proliferation. Hence ERα17p is, to our knowledge, the first known peptide targeting ERα-GPR30 membrane cross-talk and the subsequent receptor-mediated biological effects.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Oligopéptidos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Animales , Arrestinas/metabolismo , Western Blotting , Calmodulina/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Receptores ErbB/metabolismo , Estradiol/farmacología , Receptor alfa de Estrógeno/química , Receptor alfa de Estrógeno/genética , Datos de Secuencia Molecular , Oligopéptidos/química , Oligopéptidos/farmacocinética , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Interferencia de ARN , Ratas , Receptor Cross-Talk/efectos de los fármacos , Receptores Acoplados a Proteínas G/genética , beta-Arrestinas
8.
Angew Chem Int Ed Engl ; 55(42): 13174-13179, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27654901

RESUMEN

We have developed a convenient method for the direct synthesis of peptide thioesters, versatile intermediates for peptide ligation and cyclic peptide synthesis. The technology uses a modified Boc SPPS strategy that avoids the use of anhydrous HF. Boc in situ neutralization protocols are used in combination with Merrifield hydroxymethyl resin and TFA/TMSBr cleavage. Avoiding HF extends the scope of Boc SPPS to post-translational modifications that are compatible with the milder cleavage conditions, demonstrated here with the synthesis of the phosphorylated protein CHK2. Peptide thioesters give easy, direct, access to cyclic peptides, illustrated by the synthesis of cyclorasin, a KRAS inhibitor.


Asunto(s)
Ésteres/química , Ésteres del Ácido Fórmico/síntesis química , Péptidos/química , Compuestos de Sulfhidrilo/química , Ciclización , Ésteres del Ácido Fórmico/química , Estructura Molecular
9.
Biochim Biophys Acta ; 1838(8): 2087-98, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24796502

RESUMEN

The peptide KLA (acetyl-(KLAKLAK)2-NH2), which is rather non toxic for eukaryotic cell lines, becomes active when coupled to the cell penetrating peptide, penetratin (Pen), by a disulfide bridge. Remarkably, the conjugate KLA-Pen is cytotoxic, at low micromolar concentrations, against a panel of seven human tumor cell lines of various tissue origins, including cells resistant to conventional chemotherapy agents but not to normal human cell lines. Live microscopy on cells possessing fluorescent labeled mitochondria shows that in tumor cells, KLA-Pen had a strong impact on mitochondria tubular organization instantly resulting in their aggregation, while the unconjugated KLA and pen peptides had no effect. But, mitochondria in various normal cells were not affected by KLA-Pen. The interaction with membrane models of KLA-Pen, KLA and penetratin were studied using dynamic light scattering, calorimetry, plasmon resonance, circular dichroism and ATR-FTIR to unveil the mode of action of the conjugate. To understand the selectivity of the conjugate towards tumor cell lines and its action on mitochondria, lipid model systems composed of zwitterionic lipids were used as mimics of normal cell membranes and anionic lipids as mimics of tumor cell and mitochondria membrane. A very distinct mode of interaction with the two model systems was observed. KLA-Pen may exert its deleterious and selective action on cancer cells by the formation of pores with an oblique membrane orientation and establishment of important hydrophobic interactions. These results suggest that KLA-Pen could be a lead compound for the design of cancer therapeutics.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas Portadoras/farmacología , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Neoplasias/patología , Péptidos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica , Rastreo Diferencial de Calorimetría , Péptidos de Penetración Celular , Dicroismo Circular , Humanos , Péptidos y Proteínas de Señalización Intercelular , Liposomas , Lípidos de la Membrana/metabolismo , Neoplasias/tratamiento farmacológico , Péptidos/química , Espectroscopía Infrarroja por Transformada de Fourier , Células Tumorales Cultivadas
10.
Biopolymers ; 104(5): 533-43, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25846422

RESUMEN

The internalization of cell-penetrating peptides (CPPs) into liposomes (large unilamellar vesicles, LUVs) was studied with a rapid and robust procedure based on the quenching of a small fluorescent probe, 7-nitrobenz-2-oxa-1,3-diazole (NBD). Quenching can be achieved by reduction with dithionite or by pH jump. LUVs with different compositions of phospholipids (PLs) were used to screen the efficacy of different CPPs. In order to "validate" the composition of the membrane models, a control cationic peptide, which does not enter eukaryotic cells, was included in the study. It was found that pure DOPG or DOPG within ternary mixtures with cholesterol are the most appropriate models for studying CPP translocation. An anionic lipid, such as DOPG, is required for the adsorption of the basic peptides on the surface of LUVs. In addition, it acts as transfer agent through the lipid bilayer. A fluid phase and/or the presence of phase defects also appear mandatory for the internalization to occur. The neutralization of charges within an inverted micelle demonstrated in the case of DOPG and also proposed for a ternary mixture of PLs might not be the only mechanism for the CPP translocation. Finally, it is shown that oleic acid facilitates the entry inside LUVs in gel phase of a series of cationic peptides including CPPs and also the negative control peptide PKCi.


Asunto(s)
Bioensayo/métodos , Péptidos de Penetración Celular/metabolismo , Liposomas Unilamelares/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Péptidos de Penetración Celular/química , Colorantes Fluorescentes/química , Factores de Tiempo , Liposomas Unilamelares/química
11.
Chembiochem ; 15(6): 884-91, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24677480

RESUMEN

In this study, the direct translocation of cell-penetrating peptides (CPPs) into large unilamellar vesicles (LUVs) was shown to be rapid for all the most commonly used CPPs. This translocation led within a few minutes to intravesicular accumulation up to 0.5 mM, with no need for a transbilayer potential. The accumulation of CPPs inside LUVs was found to depend on CPP sequence, CPP extravesicular concentration and phospholipid (PL) composition, either in binary or ternary mixtures of PLs. More interestingly, the role of anionic phospholipid flip-flopping in the translocation process was ascertained. CPPs enhanced the flipping of PLs, and the intravesicular CPP accumulation directly correlated with the amount of anionic PLs that had been transferred from the external to the internal leaflet of the LUV bilayer, thus demonstrating the transport of peptide/lipid complexes as inverted micelles.


Asunto(s)
Péptidos de Penetración Celular/metabolismo , Micelas , Liposomas Unilamelares/metabolismo , Péptidos de Penetración Celular/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Fosfatidilgliceroles/química , Fosfolípidos/química , Liposomas Unilamelares/química
12.
Anal Biochem ; 456: 25-31, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24747023

RESUMEN

Histone lysine methyltransferases (HKMTs) are enzymes that play an essential role in epigenetic regulation. Thus, identification of inhibitors specifically targeting these enzymes represents a challenge for the development of new antitumor therapeutics. Several methods for measuring HKMT activity are already available. Most of them use indirect measurement of the enzymatic reaction through radioactive labeling or antibody-recognized products or coupled enzymatic assays. Mass spectrometry (MS) represents an interesting alternative approach because it allows direct detection and quantification of enzymatic reactions and can be used to determine kinetics and to screen small molecules as potential inhibitors. Application of mass spectrometry to the study of HKMTs has not been fully explored yet. We describe here the development of a simple reliable label-free MALDI-TOF MS-based assay for the detection and quantification of peptide methylation, using SET7/9 as a model enzyme. Importantly, the use of expensive internal standard often required in mass spectrometry quantitative analysis is not necessary in this assay. This MS assay allowed us to determine enzyme kinetic parameters as well as IC50 for a known inhibitor of this enzyme. Furthermore, a comparative study with an antibody-based immunosorbent assay showed that the MS assay is more reliable and suitable for the screening of inhibitors.


Asunto(s)
Pruebas de Enzimas/métodos , N-Metiltransferasa de Histona-Lisina/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Secuencia de Aminoácidos , Pruebas de Enzimas/economía , Inhibidores Enzimáticos/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Concentración 50 Inhibidora , Cinética , Metilación , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo , Reproducibilidad de los Resultados , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/economía , Factores de Tiempo
13.
FASEB J ; 27(2): 738-49, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23070606

RESUMEN

Deciphering the structural requirements and mechanisms for internalization of cell-penetrating peptides (CPPs) is required to improve their delivery efficiency. Herein, a unique role of tryptophan (Trp) residues in the interaction and structuring of cationic CPP sequences with glycosaminoglycans (GAGs) has been characterized, in relation with cell internalization. Using isothermal titration calorimetry, circular dichroism, NMR, mass spectrometry, and phase-contrast microscopy, we compared the interaction of 7 basic CPPs with 5 classes of GAGs. We found that the affinity of CPPs for GAGs increases linearly with the number of Trp residues, from 30 nM for a penetratin analog with 1 Trp residue to 1.5 nM for a penetratin analog with 6 Trp residues for heparin (HI); peptides with Trp residues adopt a predominantly ß-strand structure in complex with HI and form large, stable ß-sheet aggregates with GAGs; and in the absence of any cytotoxicity effect, the quantity of peptide internalized into CHO cells increased 2 times with 1 Trp residue, 10 times with 2 Trp residues, and 20 times with 3 Trp residues, compared with +6 peptides with no Trp residues. Therefore, Trp residues represent molecular determinants in basic peptide sequences not only for direct membrane translocation but also for efficient endocytosis through GAGs.


Asunto(s)
Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Endocitosis/fisiología , Glicosaminoglicanos/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Transporte Biológico Activo , Células CHO , Membrana Celular/metabolismo , Péptidos de Penetración Celular/genética , Cricetinae , Cricetulus , Glicosaminoglicanos/química , Modelos Biológicos , Datos de Secuencia Molecular , Estructura Molecular , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Termodinámica , Triptófano/química
14.
Biochim Biophys Acta ; 1818(3): 448-57, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22182801

RESUMEN

Glycosylated cell penetrating peptides (CPPs) have been conjugated to a peptide cargo and the efficiency of cargo delivery into wild type Chinese hamster ovary (CHO) and proteoglycan deficient CHO cells has been quantified by MALDI-TOF mass spectrometry and compared to tryptophan- or alanine containing CPPs. In parallel, the behavior of these CPPs in contact with model membranes has been characterized by different biophysical techniques: Differential Scanning and Isothermal Titration Calorimetries, Imaging Ellipsometry and Attenuated Total Reflectance IR spectroscopy. With these CPPs we have demonstrated that tryptophan residues play a key role in the insertion of a CPP and its conjugate into the membrane: galactosyl residues hampered the internalization when introduced in the middle of the amphipathic secondary structure of a CPP but not when added to the N-terminus, as long as the tryptophan residues were still present in the sequence. The insertion of these CPPs into membrane models was enthalpy driven and was related to the number of tryptophans in the sequence of these secondary amphipathic CPPs. Additionally, we have observed a certain propensity of the investigated CPP analogs to aggregate in contact with the lipid surface.


Asunto(s)
Péptidos de Penetración Celular/farmacocinética , Galactosa/farmacocinética , Modelos Biológicos , Triptófano/farmacocinética , Animales , Células CHO , Péptidos de Penetración Celular/síntesis química , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Cricetinae , Cricetulus , Galactosa/química , Galactosa/farmacología , Estructura Secundaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Triptófano/química , Triptófano/farmacología
15.
Nat Commun ; 14(1): 1998, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37032404

RESUMEN

Engrailed2 (En2) is a transcription factor that transfers from cell to cell through unconventional pathways. The poorly understood internalization mechanism of this cationic protein is proposed to require an initial interaction with cell-surface glycosaminoglycans (GAGs). To decipher the role of GAGs in En2 internalization, we have quantified the entry of its homeodomain region in model cells that differ in their content in cell-surface GAGs. The binding specificity to GAGs and the influence of this interaction on the structure and dynamics of En2 was also investigated at the amino acid level. Our results show that a high-affinity GAG-binding sequence (RKPKKKNPNKEDKRPR), upstream of the homeodomain, controls En2 internalization through selective interactions with highly-sulfated heparan sulfate GAGs. Our data underline the functional importance of the intrinsically disordered basic region upstream of En2 internalization domain, and demonstrate the critical role of GAGs as an entry gate, finely tuning homeoprotein capacity to internalize into cells.


Asunto(s)
Glicosaminoglicanos , Heparitina Sulfato , Heparitina Sulfato/metabolismo , Glicosaminoglicanos/metabolismo , Factores de Transcripción , Proteínas de Homeodominio/genética , Sulfatos , Sulfatos de Condroitina/metabolismo
16.
Methods Mol Biol ; 2529: 297-311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733021

RESUMEN

Identification of histone lysine methyltransferase (HKMT) substrates has recently benefited from chemical-biology-based strategies in which artificial S-adenosyl-L-methionine (SAM) cofactors are engineered to allow substrate labeling using either the wild-type target enzyme or designed mutants. Once labeled, substrates can be selectively functionalized with an affinity tag, using a bioorthogonal ligation reaction, to allow their recovery from cell extracts and subsequent identification. In this chapter, we describe steps on how to proceed to set up such an approach to characterize substrates of specific HKMTs of the SET domain superfamily, from the characterization of the HKMT able to accommodate a SAM surrogate containing a bioorthogonal moiety, to the proteomic analysis conducted on a cell extract. We focus in particular on the controls that are necessary to ensure reliable proteomic data analysis. The example of PR-Set7 on which we have implemented this approach is shown.


Asunto(s)
Metionina , S-Adenosilmetionina , N-Metiltransferasa de Histona-Lisina/química , Dominios PR-SET , Proteómica , S-Adenosilmetionina/química
17.
ACS Appl Mater Interfaces ; 14(13): 15021-15034, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35319860

RESUMEN

The endosomal entrapment of functional nanoparticles is a severe limitation to their use for biomedical applications. In the case of magnetic nanoparticles (MNPs), this entrapment leads to poor heating efficiency for magnetic hyperthermia and suppresses the possibility to manipulate them in the cytosol. Current strategies to limit their entrapment include functionalization with cell-penetrating peptides to promote translocation directly across the cell membrane or facilitate endosomal escape. However, these strategies suffer from the potential release of free peptides in the cell, and to the best of our knowledge, there is currently a lack of effective methods for the cytosolic delivery of MNPs after incubation with cells. Herein, we report the conjugation of fluorescently labeled cationic peptides to γ-Fe2O3@SiO2 core-shell nanoparticles by click chemistry to improve MNP access to the cytosol. We compare the effect of Arg9 and His4 peptides. On the one hand, Arg9 is a classical cell-penetrating peptide able to enter cells by direct translocation, and on the other hand, it has been demonstrated that sequences rich in histidine residues can promote endosomal escape, possibly by the proton sponge effect. The methodology developed here allows a high colocalization of the peptides and core-shell nanoparticles in cells and confirms that grafting peptides rich in histidine residues onto nanoparticles promotes NPs' access to the cytosol. Endosomal escape was confirmed by a calcein leakage assay and by ultrastructural analysis in transmission electron microscopy. No toxicity was observed for the peptide-nanoparticles conjugates. We also show that our conjugation strategy is compatible with the addition of multiple substrates and can thus be used for the delivery of cytoplasm-targeted therapeutics.


Asunto(s)
Péptidos de Penetración Celular , Nanopartículas , Péptidos de Penetración Celular/metabolismo , Citosol/metabolismo , Endosomas/metabolismo , Fenómenos Magnéticos , Nanopartículas/química , Dióxido de Silicio/metabolismo
18.
Biochim Biophys Acta ; 1798(12): 2182-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19932680

RESUMEN

This review summarizes the contribution of MALDI-TOF mass spectrometry in the study of cell-penetrating peptide (CPP) internalization in eukaryote cells. This technique was used to measure the efficiency of cell-penetrating peptide cellular uptake and cargo delivery and to analyze carrier and cargo intracellular degradation. The impact of thiol-containing membrane proteins on the internalization of CPP-cargo disulfide conjugates was also evaluated by combining MALDI-TOF MS with simple thiol-specific reactions. This highlighted the formation of cross-linked species to cell-surface proteins that either remained trapped in the cell membrane or led to intracellular delivery. MALDI-TOF MS is thus a powerful tool to dissect CPP internalization mechanisms.


Asunto(s)
Membrana Celular/química , Péptidos de Penetración Celular/análisis , Proteínas de la Membrana/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Membrana Celular/metabolismo , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Péptidos de Penetración Celular/farmacología , Reactivos de Enlaces Cruzados/análisis , Reactivos de Enlaces Cruzados/química , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Compuestos de Sulfhidrilo/metabolismo
19.
Biochim Biophys Acta ; 1798(12): 2231-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20152795

RESUMEN

Although cell-penetrating peptides are widely used as molecular devices to cross membranes and transport molecules or nanoparticles inside cells, the underlying internalization mechanism for such behavior is still studied and discussed. One of the reasons for such a debate is the wide panel of chemically different cell-penetrating peptides or cargo that is used. Indeed the intrinsic physico-chemical properties of CPP and conjugates strongly affect the cell membrane recognition and therefore the internalization pathways. Altogether, the mechanisms described so far should be shared between two general pathways: endocytosis and direct translocation. As it is established now that one cell-penetrating peptide can internalize at the same time by these two different pathways, the balance between the two pathways relies on the binding of the cell-penetrating peptide or conjugate to specific cell membrane components (carbohydrates, lipids). Like endocytosis which includes clathrin- and caveolae-dependent processes and macropinocytosis, different translocation mechanisms could co-exist, an idea that emerges from recent studies. In this review, we will focus solely on penetratin membrane interactions and internalization mechanisms.


Asunto(s)
Proteínas Portadoras/química , Membrana Celular/química , Péptidos de Penetración Celular/química , Animales , Proteínas Portadoras/metabolismo , Proteínas Portadoras/farmacología , Membrana Celular/metabolismo , Péptidos de Penetración Celular/metabolismo , Péptidos de Penetración Celular/farmacología , Endocitosis/efectos de los fármacos , Humanos , Transporte de Proteínas/efectos de los fármacos
20.
Anal Chem ; 83(8): 3003-10, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21428305

RESUMEN

The goal of this study was to detect and quantify by MALDI-TOF MS the phosphorylation of a peptide containing the recognition motif of the Protein Kinase C (PKC). Such model peptide can be used as a phosphorylation probe to follow intracellular kinase/phosphatase activities. This study allowed us to establish relationships between sequence specificities and affinity for TiO(2) or IMAC media. The peptide has the sequence biotin-GGGGCFRTPSFLKK-NH(2) in which the serine residue can be phosphorylated. Enrichment of the corresponding phosphopeptide, by the dedicated IMAC and TiO(2) affinity chromatography methods, proved inefficient. By combining MALDI-TOF and NMR data, we first showed that the lack of affinity of the phosphopeptide for TiO(2) was partly related to the basic property of its peptide sequence. Furthermore, the peptide shows local structuration around the P(9)- S(10) segment, with formation of a salt bridge between the guanidinium group of the R(7) side chain and the phosphate moiety. In conjunction with an inadequate position of the {biotin-G(4)} N-terminal tag, this local structure could shield the phosphate group, preventing interaction with TiO(2). To improve TiO(2) affinity, the peptide sequence was modified accordingly. The new sequences retained the biological properties while their enrichment by IMAC or TiO(2) became possible.


Asunto(s)
Fosfopéptidos/análisis , Secuencia de Aminoácidos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fosfopéptidos/síntesis química , Fosfopéptidos/metabolismo , Fosforilación , Proteína Quinasa C/química , Proteína Quinasa C/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA