Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Oral Dis ; 29(8): 3003-3015, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35765235

RESUMEN

OBJECTIVE: To systematically identify and summarise current research on the utility of confocal microscopy in oral squamous cell carcinoma and oral epithelial dysplasia in oral potentially malignant disorders. METHODS: Databases Medline, Embase, Evidence-Based Medicine, and Web of Science were searched with articles screened and included if their primary objective was the use of a confocal microscope in diagnosis of oral cancer or epithelial dysplasia, in vivo or ex vivo. RESULTS AND DISCUSSION: Twenty-eight relevant studies were identified of which 21 studies included oral squamous cell carcinoma specimens. Fifteen studies included in vivo use. The studies included both qualitative and fluorescence confocal microscope and reflectance confocal microscope analysis along with quantitative analysis of carcinoma and dysplasia. Thirteen studies reported the predictive value of their confocal device in the diagnosis of dysplasia and carcinoma. The quantitative software-based studies show promise in objectifying the diagnostic process for identifying abnormalities within the microstructure of the oral mucosa. CONCLUSIONS: There was heterogeneity in the criteria for diagnosis of dysplasia and oral squamous cell carcinoma with experience levels of assessors impacting method efficacy. Both qualitative and quantitative confocal assessment methodologies have been explored, the latter highlighting the potential of future machine-augmented diagnostic precision.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Enfermedades de la Boca , Neoplasias de la Boca , Lesiones Precancerosas , Humanos , Neoplasias de la Boca/diagnóstico por imagen , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Enfermedades de la Boca/diagnóstico , Lesiones Precancerosas/patología , Microscopía Confocal/métodos
2.
Front Oncol ; 13: 1209261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469413

RESUMEN

Introduction: Scanned fibre endomicroscopes are full point-scanning confocal microscopes with submicron lateral resolution with an optical slice thickness thin enough to isolate individual cell layers, allow active positioning of the optical slice in the z-axis and collection of megapixel images. Here we present descriptive findings and a brief atlas of an acquisition and annotation protocol high resolution in vivo capture of oral mucosal pathology including oral squamous cell carcinoma and dysplasia using a fluorescence scanned fibre endomicroscope with 3 topical fluorescent imaging agents: fluorescein, acriflavine and PARPi-FL. Methods: Digital biopsy was successfully performed via an acquisition protocol in seventy-one patients presenting for investigation of oral mucosal abnormalities using a miniaturized, handheld scanned fibre endoscope. Multiple imaging agents were utilized and multiple time points sampled. Fifty-nine patients had a matched histopathology correlating in location with imaging. The images were annotated back to macrographic location using a purpose-built software, MouthMap™. Results: Acquisition and annotation of cellular level resolved images was demonstrated with all 3 topical agents. Descriptive observations between clinically or histologically normal oral mucosa showed regular intranuclear distance, a regular nuclear profile and fluorescent homogeneity. This was dependent on the intraoral location and type of epithelium being observed. Key features of malignancy were a loss of intranuclear distance, disordered nuclear clustering and irregular nuclear fluorescence intensity and size. Perinuclear fluorescent granules were seen in the absence of irregular nuclear features in lichenoid inflammation. Discussion: High resolution oral biopsy allows for painless and rapid capture of multiple mucosal sites, resulting in more data points to increase diagnostic precision. High resolution digital micrographs can be easily compared serially across multiple time points utilizing an annotation software. In the present study we have demonstrated realization of a high-resolution digital biopsy protocol of the oral mucosa for utility in the diagnosis of oral cancer and precancer..

3.
J Exp Orthop ; 9(1): 74, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907038

RESUMEN

PURPOSE: Certain types of repetitive sub-maximal knee loading cause microfatigue damage in the human anterior cruciate ligament (ACL) that can accumulate to produce macroscopic tissue failure. However, monitoring the progression of that ACL microfatigue damage as a function of loading cycles has not been reported. To explore the fatigue process, a confocal laser endomicroscope (CLEM) was employed to capture sub-micron resolution fluorescence images of the tissue in situ. The goal of this study was to quantify the in situ changes in ACL autofluorescence (AF) signal intensity and collagen microstructure as a function of the number of loading cycles. METHODS: Three paired and four single cadaveric knees were subjected to a repeated 4 times bodyweight landing maneuver known to strain the ACL. The paired knees were used to compare the development of ACL microfatigue damage on the loaded knee after 100 consecutive loading cycles, relative to the contralateral unloaded control knee, through second harmonic generation (SHG) and AF imaging using confocal microscopy (CM). The four single knees were used for monitoring progressive ACL microfatigue damage development by AF imaging using CLEM. RESULTS: The loaded knees from each pair exhibited a statistically significant increase in AF signal intensity and decrease in SHG signal intensity as compared to the contralateral control knees. Additionally, the anisotropy of the collagen fibers in the loaded knees increased as indicated by the reduced coherency coefficient. Two out of the four single knee ACLs failed during fatigue loading, and they exhibited an order of magnitude higher increase in autofluorescence intensity per loading cycle as compared to the intact knees. Of the three regions of the ACL - proximal, midsubstance and distal - the proximal region of ACL fibers exhibited the highest AF intensity change and anisotropy of fibers. CONCLUSIONS: CLEM can capture changes in ACL AF and collagen microstructures in situ during and after microfatigue damage development. Results suggest a large increase in AF may occur in the final few cycles immediately prior to or at failure, representing a greater plastic deformation of the tissue. This reinforces the argument that existing microfatigue damage can accumulate to induce bulk mechanical failure in ACL injuries. The variation in fiber organization changes in the ACL regions with application of load is consistent with the known differences in loading distribution at the ACL femoral enthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA