Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Langmuir ; 40(9): 4661-4668, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38375793

RESUMEN

Single-atom (SA) decoration has emerged as a frontier in catalysis due to its unique characteristics. Recently, decorated Pt single atoms on titania have shown promise in photocatalytic hydrogen evolution. In this work, we demonstrate that Pt SAs can spontaneously deposit on the surface, driven by electrostatic forces; the key is to determine the golden pH and surface potential. We conducted a comprehensive investigation into the influence of the pH of the deposition precursor on the spontaneous adsorption of Pt SAs onto TiO2 nanosheets (TiNSs). We introduced a straightforward pH-dependent and charge-dependent strategy for the solid electrostatic anchoring of Pt SAs on TiO2. Furthermore, we established that the level of Pt loading can be controlled by adjusting the precursor pH. X-ray photoelectron spectroscopy (XPS) and high-angle annular dark-field imaging scanning transmission electron microscopy (HAADF-STEM) were used to evaluate the Pt SA-decorated samples. Photocatalytic hydrogen production activity was assessed under ultraviolet (UV) (365 nm) irradiation. Notably, we found that at a pH of 8, slightly below the measured point of zero charge (PZC), a unique mixture of Pt clusters and single atoms was deposited on the surface of TiNSs. This unique composition significantly improved hydrogen production, resulting in ∼3.7 mL of hydrogen generated after 8 h of UV exposure by only 10 mg of the Pt-decorated TiNS (with Pt loadings of 0.12 at. %), which is ∼300 times higher than the undecorated TiNS.

2.
Nano Lett ; 23(6): 2074-2080, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36862532

RESUMEN

Terahertz (THz) radiation is a valuable tool to investigate the electronic properties of lead halide perovskites (LHPs). However, attaining high-resolution information remains elusive, as the diffraction-limited spatial resolution (∼300 µm) of conventional THz methods prevents a direct analysis of microscopic effects. Here, we employ THz scattering scanning near-field optical microscopy (THz-sSNOM) for nanoscale imaging of cesium lead bromide (CsPbBr3) thin films down to the single grain level at 600 GHz. Adopting a scattering model, we are able to derive the local THz nanoscale conductivity in a contact-free fashion. Increased THz near-field signals at CsPbBr3 grain boundaries complemented by correlative transmission electron microscopy-energy-dispersive X-ray spectroscopy elemental analysis point to the formation of halide vacancies (VBr) and Pb-Pb bonds, which induce charge carrier trapping and can lead to nonradiative recombination. Our study establishes THz-sSNOM as a powerful THz nanoscale analysis platform for thin-film semiconductors such as LHPs.

3.
Environ Sci Technol ; 54(14): 8681-8689, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32539366

RESUMEN

The increasing use of manufactured nanomaterials (MNMs) and their inevitable release into the environment, especially via wastewater treatment plants (WWTPs), poses a potential threat for aquatic organisms. The characterization of MNMs with analytical tools to comprehend their fate and effect on the ecosystem is hence of great importance for environmental risk assessment. We herein report, for the first time, the investigation of physicochemical transformation processes during artificial wastewater treatment of silver (Ag-NPs) and titanium dioxide nanoparticles (TiO2-NPs) via selected area electron diffraction (SAED). TiO2-NPs with an anatase/rutile ratio of ∼80/20 were found to not undergo any physicochemical transformation, as shown via previous energy-dispersive X-ray analysis (EDX) elemental mapping and crystal structure analysis via SAED. In contrast, Ag-NPs were colocalized with substantial amounts of sulfur (Ag/S ratio of 1.9), indicating the formation of Ag2S. SAED ultimately proved the complete transformation of face-centered cubic (fcc) Ag-NPs into monoclinic Ag2S-NPs. The size distribution of both nanomaterials remained virtually unchanged. Our investigations show that cloud point extraction of NPs and their subsequent crystal structure analysis via SAED is another valuable approach toward the comprehensive investigation of wastewater-borne MNMs. However, the extraction procedure needs optimization for environmentally low NP concentrations.


Asunto(s)
Nanopartículas del Metal , Plata , Ecosistema , Electrones , Titanio , Aguas Residuales
4.
Nature ; 505(7484): 533-7, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24352231

RESUMEN

Dislocations represent one of the most fascinating and fundamental concepts in materials science. Most importantly, dislocations are the main carriers of plastic deformation in crystalline materials. Furthermore, they can strongly affect the local electronic and optical properties of semiconductors and ionic crystals. In materials with small dimensions, they experience extensive image forces, which attract them to the surface to release strain energy. However, in layered crystals such as graphite, dislocation movement is mainly restricted to the basal plane. Thus, the dislocations cannot escape, enabling their confinement in crystals as thin as only two monolayers. To explore the nature of dislocations under such extreme boundary conditions, the material of choice is bilayer graphene, the thinnest possible quasi-two-dimensional crystal in which such linear defects can be confined. Homogeneous and robust graphene membranes derived from high-quality epitaxial graphene on silicon carbide provide an ideal platform for their investigation. Here we report the direct observation of basal-plane dislocations in freestanding bilayer graphene using transmission electron microscopy and their detailed investigation by diffraction contrast analysis and atomistic simulations. Our investigation reveals two striking size effects. First, the absence of stacking-fault energy, a unique property of bilayer graphene, leads to a characteristic dislocation pattern that corresponds to an alternating AB B[Symbol: see text]AC change of the stacking order. Second, our experiments in combination with atomistic simulations reveal a pronounced buckling of the bilayer graphene membrane that results directly from accommodation of strain. In fact, the buckling changes the strain state of the bilayer graphene and is of key importance for its electronic properties. Our findings will contribute to the understanding of dislocations and of their role in the structural, mechanical and electronic properties of bilayer and few-layer graphene.

5.
Proc Natl Acad Sci U S A ; 112(42): 12911-6, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26438839

RESUMEN

The wing scales of the Green Hairstreak butterfly Callophrys rubi consist of crystalline domains with sizes of a few micrometers, which exhibit a congenitally handed porous chitin microstructure identified as the chiral triply periodic single-gyroid structure. Here, the chirality and crystallographic texture of these domains are investigated by means of electron tomography. The tomograms unambiguously reveal the coexistence of the two enantiomeric forms of opposite handedness: the left- and right-handed gyroids. These two enantiomers appear with nonequal probabilities, implying that molecularly chiral constituents of the biological formation process presumably invoke a chiral symmetry break, resulting in a preferred enantiomeric form of the gyroid structure. Assuming validity of the formation model proposed by Ghiradella H (1989) J Morphol 202(1):69-88 and Saranathan V, et al. (2010) Proc Natl Acad Sci USA 107(26):11676-11681, where the two enantiomeric labyrinthine domains of the gyroid are connected to the extracellular and intra-SER spaces, our findings imply that the structural chirality of the single gyroid is, however, not caused by the molecular chirality of chitin. Furthermore, the wing scales are found to be highly textured, with a substantial fraction of domains exhibiting the <001> directions of the gyroid crystal aligned parallel to the scale surface normal. Both findings are needed to completely understand the photonic purpose of the single gyroid in gyroid-forming butterflies. More importantly, they show the level of control that morphogenesis exerts over secondary features of biological nanostructures, such as chirality or crystallographic texture, providing inspiration for biomimetic replication strategies for synthetic self-assembly mechanisms.


Asunto(s)
Mariposas Diurnas/anatomía & histología , Alas de Animales/anatomía & histología , Animales , Microscopía Electrónica de Transmisión de Rastreo , Alas de Animales/ultraestructura
6.
Nano Lett ; 17(8): 5171-5178, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28692280

RESUMEN

Lithium (Li) metal is a high-capacity anode material (3860 mAh g-1) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O2), nitrogen (N2), and water vapor (H2O). We find that while dry O2 and N2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.

7.
Nanotechnology ; 27(42): 425703, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27622904

RESUMEN

The organic semiconductor silver-tetracyanoquinodimethane (Ag-TCNQ) exhibits electrical switching and memory characteristics. Employing a scanning tunnelling microscopy setup inside a transmission electron microscope, the switching behaviour of individual Ag-TCNQ nanowires (NWs) is investigated in detail. For a large number of NWs, the switching between a high (OFF) and a low (ON) resistance state was successfully stimulated by negative bias sweeps. Fitting the experimental I-V curves with a Schottky emission function makes the switching features prominent and thus enables a direct evaluation of the switching process. A memory cycle including writing, reading and erasing features is demonstrated at an individual NW. Moreover, electronic failure mechanisms due to Joule heating are discussed. These findings have a significant impact on our understanding of the switching behaviour of Ag-TCNQ.

8.
Angew Chem Int Ed Engl ; 55(51): 15771-15774, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27865029

RESUMEN

Controlling the chemistry of graphene is necessary to enable applications in materials and life sciences. Research beyond graphene oxide is targeted to avoid the highly defective character of the carbon framework. Herein, we show how to optimize the synthesis of oxo-functionalized graphene (oxo-G) to prepare high-quality monolayer flakes that even allow for direct transmission electron microscopy investigation at atomic resolution (HRTEM). The role of undesired residuals is addressed and sources are eliminated. HRTEM provides clear evidence for the exceptional integrity of the carbon framework of such oxo-G sheets. The patchy distribution of oxo-functionality on the nm-scale, observed on our highly clean oxo-G sheets, corroborates theoretical predictions. Moreover, defined electron-beam irradiation facilitates gentle de-functionalization of oxo-G sheets, a new route towards clean graphene, which is a breakthrough for localized graphene chemistry.

9.
Phys Chem Chem Phys ; 17(28): 18278-81, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26123655

RESUMEN

We investigate the resistivity switching in individual Ag-TCNQ wires with on/off-ratios of up to 10(3). Raman and soft X-ray absorption microspectroscopy studies disclose reverse charge transfer. Quantifying of the fraction of neutral TCNQ within the switched material yields values up to 22.3%. These findings expedite the understanding of the switching process in Ag-TCNQ nanowires.

10.
J Am Chem Soc ; 136(49): 17308-16, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25372278

RESUMEN

We report the characterization of carbon nanodots (CNDs) synthesized under mild and controlled conditions, that is, in a microwave reactor. The CNDs thus synthesized exhibit homogeneous and narrowly dispersed optical properties. They are thus well suited as a testbed for studies of the photophysics of carbon-based nanoscopic emitters. In addition to steady-state investigations, time-correlated single-photon counting, fluorescence up-conversion, and transient pump probe absorption spectroscopy were used to elucidate the excited-state dynamics. Moreover, quenching the CND-based emission with electron donors or acceptors helped shed light on the nature of individual states. Density functional theory and semiempirical configuration-interaction calculations on model systems helped understand the fundamental structure-property relationships for this novel type of material.


Asunto(s)
Carbono/química , Luminiscencia , Nanoestructuras/química , Procesos Fotoquímicos , Teoría Cuántica
11.
ACS Appl Eng Mater ; 1(3): 947-954, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37008885

RESUMEN

Electrochemically exfoliated graphene (e-G) thin films on Nafion membranes exhibit a selective barrier effect against undesirable fuel crossover. This approach combines the high proton conductivity of state-of-the-art Nafion and the ability of e-G layers to effectively block the transport of methanol and hydrogen. Nafion membranes are coated with aqueous dispersions of e-G on the anode side, making use of a facile and scalable spray process. Scanning transmission electron microscopy and electron energy-loss spectroscopy confirm the formation of a dense percolated graphene flake network, which acts as a diffusion barrier. The maximum power density in direct methanol fuel cell (DMFC) operation with e-G-coated Nafion N115 is 3.9 times higher than that of the Nafion N115 reference (39 vs 10 mW cm-2@0.3 V) at a 5M methanol feed concentration. This suggests the application of e-G-coated Nafion membranes for portable DMFCs, where the use of highly concentrated methanol is desirable.

12.
Langmuir ; 28(24): 8971-8, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22356577

RESUMEN

Patchy particles possessing heterogeneous surface composition show great promise as self-organizing building blocks for new classes of hierarchical functional structures. A major hurdle is the scalable synthesis of stable patches on nanosized core particles with arbitrarily defined patch number and coverage. So far, few methods have been reported which could be expected to meet these challenges. Recently, we described the heterogeneous nucleation and growth of silver patches on silica nanospheres via a template free colloidal route. The patches produced, although tunable in size and number and showing interesting plasmon resonant properties, were rather unstable and degraded rapidly during attempts to process them further. In the present work, therefore, we set out to explore if related approaches can be employed to produce patchy particles involving gold, which is known to be more stable. The differences between typical patch precursors Ag(+) and [AuCl(x)(OH)(4-x)](-) and their respective interactions with amorphous silica make this a significant challenge. We show that preformed small silver patches in addition to the presence of a reducing agent are necessary for the formation of gold patches conformal to the silica nanosphere surface. Systematic study of the process parameters and their influence on the patchy particle morphology as well as in-depth analytical transmission electron microscopy investigation of the patch composition reveal that patches spread over the silica surface via a cycle of galvanic dissolution and redeposition of silver. The resulting gold patchy particles remain stable during subsequent storage or washing and display tunable plasmon resonances within the visible and near-IR spectrum.

13.
Angew Chem Int Ed Engl ; 51(26): 6421-5, 2012 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-22593042

RESUMEN

"Green" graphene: For the first time, the covalent attachment of a light-harvesting and electron-donating phthalocyanine to the basal plane of few-layer graphene is reported. Physicochemical characterizations reveal an ultrafast charge separation from the photoexcited phthalocyanine to few-layer graphene followed by a slower charge recombination.

14.
Digit Health ; 8: 20552076221134448, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386248

RESUMEN

Objective: Models explaining technology acceptance fail to recognize the influence temporary, compulsory usage, meaning forced usage due to external factors, may have on user evaluation and continued diffusion. However, in context of the Covid-19 pandemic, a highly infectious respiratory disease, the significance of this factor is evident. Triggered by legal contact restrictions and extended reimbursement capacities, usage of telepsychotherapy increased drastically, thereby influencing therapists' attitude and increasing the technology's maturity. In this comprehensive literature review, we aim to outline the current state of research toward telepsychotherapy adoption and identify potential influences of the compulsory usage on the reevaluation of technology as well as barriers inhibiting and factors promoting future use. Methods: The review was conducted on the five databases ScienceDirect, Web of Science, PubMed, PubPsych, and IEEE up to April 2022. Results: Out of 685 identified references, a final selection was made of 22 papers, discussing experiences with telepsychotherapy in the context of the Covid-19 pandemic. Satisfaction and intention to use are universally high, further increasing with time and use experience, while perceived challenges decrease. Barriers include mostly contextual factors, such as technical issues, reimbursement issues, strict regulations, insufficient infrastructure, and lack of organizational support, but also concerns regarding efficacy. Promoting factors are training, guidelines, and organizational support. Conclusions: Telepsychohtherapy has become an integral part of psychotherapeutic care. A hybrid system in close coordination between provider and patient may prevail, addressing individual needs of both parties to achieve optimal care and provider well-being. This requires transparent regulations, guidelines, and standards.

15.
Healthcare (Basel) ; 10(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35455824

RESUMEN

In the past 20 years, a vast amount of research has shown that Augmented and Mixed Reality applications can support physical exercises in medical rehabilitation. In this paper, we contribute a taxonomy, providing an overview of the current state of research in this area. It is based on a comprehensive literature review conducted on the five databases Web of Science, ScienceDirect, PubMed, IEEE Xplore, and ACM up to July 2021. Out of 776 identified references, a final selection was made of 91 papers discussing the usage of visual stimuli delivered by AR/MR or similar technology to enhance the performance of physical exercises in medical rehabilitation. The taxonomy bridges the gap between a medical perspective (Patient Type, Medical Purpose) and the Interaction Design, focusing on Output Technologies and Visual Guidance. Most approaches aim to improve autonomy in the absence of a therapist and increase motivation to improve adherence. Technology is still focused on screen-based approaches, while the deeper analysis of Visual Guidance revealed 13 distinct, reoccurring abstract types of elements. Based on the analysis, implications and research opportunities are presented to guide future work.

16.
Sci Rep ; 12(1): 10178, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715553

RESUMEN

A large and growing number of applications benefit from simple, fast and highly sensitive 3D imaging sensors. The Focus-Induced Photoresponse (FIP) can achieve 3D sensing functionalities by simply evaluating the irradiance dependent nonlinear sensor response in defect-based materials. Since this advantage is intricately associated to a slow response, the electrical bandwidth of present FIP detectors is limited to a few [Formula: see text] only. The devices presented in this work enable modulation frequencies of 700 kHz and beat frequency detection up to at least 3.8 MHz, surpassing the bandwidth of reported device architectures by more than two orders of magnitude. The sensors achieve a SNR of at least [Formula: see text] at [Formula: see text] and a DC FIP detection limit of 0.6 µW/mm2. The mature and scalable low-temperature a-Si:H process technology allows operating the device under ambient air conditions waiving additional back-end passivation, geometrical fill factors of [Formula: see text] and tailoring the FIP towards adjustable 3D sensing applications.


Asunto(s)
Imagenología Tridimensional , Silicio
17.
Biomed Opt Express ; 13(2): 539-548, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35284167

RESUMEN

We investigate a model bioassay in a liquid environment using a z-scanning planar Yagi-Uda antenna, focusing on the fluorescence collection enhancement of ATTO-647N dye conjugated to DNA (deoxyribonucleic acid) molecules. The antenna changes the excitation and the decay rates and, more importantly, the emission pattern of ATTO-647N, resulting in a narrow emission angle (41°) and improved collection efficiency. We efficiently detect immobilized fluorescently-labeled DNA molecules, originating from solutions with DNA concentrations down to 1 nM. In practice, this corresponds to an ensemble of fewer than 10 ATTO-647N labeled DNA molecules in the focal area. Even though we use only one type of biomolecule and one immobilization technique to establish the procedure, our method is versatile and applicable to any immobilized, dye-labeled biomolecule in a transparent solid, air, or liquid environment.

18.
Nanoscale ; 14(40): 15165-15180, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36214128

RESUMEN

Many European sculptures and altarpieces from the Middle Ages were decorated with Zwischgold, a bilayer metal leaf with an ultra-thin gold face backed by silver. Zwischgold corrodes quickly when exposed to air, causing the surface of the artefact to darken and lose gloss. The conservation of such Zwischgold applied artefacts has been an obstinate problem. We have acquired quantitative, 3D nanoscale images of Zwischgold samples from 15th century artefacts and modern materials using ptychographic X-ray computed tomography (PXCT), a recently developed coherent diffractive imaging technique, to investigate the leaf structure and chemical state of Zwischgold. The measurements clearly demonstrate decreasing density (increasing porosity) of the leaf materials and their corrosion products, as well as delamination of the leaves from their substrate. Each of these effects speak to typically observed issues in the conservation of such Zwischgold applied artefacts. Further, a rare variant of Zwischgold that contains extremely thin multiple gold layers and an overlapping phenomenon of Zwischgold with other metal leaves are observed through PXCT. As supportive data, scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray analysis (EDX) were performed on the medieval samples.

19.
ACS Appl Mater Interfaces ; 13(40): 47488-47498, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34606719

RESUMEN

All solid-state batteries offer the possibility of increased safety at potentially higher energy densities compared to conventional lithium-ion batteries. In an all-ceramic oxide battery, the composite cathode consists of at least one ion-conducting solid electrolyte and an active material, which are typically densified by sintering. In this study, the reaction of the solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) and the active material LiNi0.6Co0.2Mn0.2O2 (NCM622) is investigated by cosintering at temperatures between 550 and 650 °C. The characterization of the composites and the reaction layer is performed by optical dilatometry, X-ray diffractometry, field emission scanning electron microscopy with energy dispersive X-ray spectroscopy, time-of-flight secondary ion mass spectrometry, as well as scanning transmission electron microscopy (STEM). Even at low sintering temperatures, elemental diffusion occurs between the two phases, which leads to the formation of secondary phases and decomposition reactions of the active material and the solid electrolyte. As a result, the densification of the composite is prevented and ion-conducting paths between individual particles cannot be formed. Based on the experimental results, a mechanism of the reactions in cosintered LATP and NCM622 oxide composite cathodes is suggested.

20.
Phys Chem Chem Phys ; 12(43): 14596-608, 2010 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-20938560

RESUMEN

Multilayer samples of the type (YSZ|Sc2O3) × n with layer thicknesses between 8 nm (n=100) and 250 nm (n=5) were prepared on (0001) sapphire substrates by pulsed laser deposition (PLD). The samples were characterised using X-ray diffraction (XRD), scanning electron microscopy (HRSEM) and transmission electron microscopy (TEM/HRTEM, SAED (selected-area electron diffraction) and quantitative EELS (electron energy-loss spectroscopy)). The polycrystalline layers show a columnar microstructure, which is typical for the used preparation technique. The layers are highly textured and only one axial orientation relation is found between yttria-stabilised zirconia (YSZ), scandium oxide and the substrate: (0001) Al2O3‖(111) Sc2O3‖(111) YSZ. A preferred orientation relationship also exists for the azimuthal rotation of the crystallites, which was demonstrated by SAED, XRD pole figure measurements and fast Fourier transformation (FFT) of HRTEM micrographs. The interfaces between YSZ, Sc2O3 and the substrate are sharp and do not contain diffuse transition regions. Dislocations appear not to be arranged in regular arrays. With increasing interface density (thinner individual layers in the multilayer), the conductivity of the multilayers decreases. We relate this to the negative nominal misfit present at the YSZ|Sc2O3 interfaces (compressive stress in YSZ at the phase boundaries). This observation agrees well with the previously investigated case of YSZ|Y2O3 (A. Peters et al., Phys. Chem. Chem. Phys., 2008, 10, 4623), where tensile misfit strain was present in YSZ at the phase boundaries, leading to a conductivity increase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA