RESUMEN
The objective of this study was to compare the diagnostic yield of the Kudoh-Ogawa (K-O) swab method for the culturing of Mycobacterium tuberculosis from clinical samples with the standard Petroff-Lowenstein-Jensen (P-LJ) procedure. A total of 2,287 sputum samples and 685 extrapulmonary clinical specimens were processed with both decontamination methods and compared for M. tuberculosis detection rate, recovery of M. tuberculosis colonies, and culture contamination. Overall, 23.9% and 23.5% of the samples, processed with, respectively, the K-O swab method and the P-LJ procedure, yielded M. tuberculosis after 8 weeks of incubation. The K-O swab method and the P-LJ procedure provided comparable diagnostic yields for extrapulmonary clinical specimens (P = 0.688), but the K-O method showed a slightly but statistically significantly higher diagnostic yield for pulmonary samples (P = 0.002). No significant difference for culture contamination or colony recovery was found for either method. The turnaround time for the isolation of M. tuberculosis was significantly shorter for the K-O swab method, with 77% of the M. tuberculosis cultures being positive within 3 weeks of incubation, and only 6.1% positivity for the P-LJ method. Concerning the workload, the K-O swab method needs a minimum sample manipulation and takes less than 4 min per sample, as the samples are not centrifuged in this procedure. The K-O swab method is an efficient and fast (in terms of sample processing and culture growth) alternative for culturing M. tuberculosis from either pulmonary or extrapulmonary clinical specimens. The method is particularly suitable for laboratories with a high workload and for laboratories lacking a special infrastructure.
Asunto(s)
Mycobacterium tuberculosis , Técnicas Bacteriológicas , Medios de Cultivo , Humanos , Manejo de Especímenes , EsputoRESUMEN
This article presents a study on the implementation of a virtual escape-room game as a novel teaching methodology in biochemistry education. The game aimed to engage students in producing monoclonal antibodies against SARS-CoV-2 while reinforcing theoretical concepts and fostering teamwork. Three versions of the game were tested, incorporating modifications to address student feedback on and improve the overall experience. The study employed a satisfaction survey to gather insights from students regarding their perception of the game. Results showed that the implementation of answer flexibility using RegEx had a significant positive impact on student satisfaction and motivation. The introduction of RegEx allowed for a more realistic and immersive gaming experience, as students could provide varied answers while still being evaluated correctly. Overall, the findings highlight the effectiveness of the game's design, the suitability of the Google Forms platform for distance learning, and the importance of incorporating answer flexibility through RegEx. These results provide valuable guidance for educators seeking to enhance student engagement and satisfaction through the use of escape-room games in biochemistry education.
Asunto(s)
Educación a Distancia , SARS-CoV-2 , Estudiantes , Juegos de Video , Humanos , Estudiantes/psicología , COVID-19/epidemiología , Bioquímica/educación , Anticuerpos Monoclonales , Enseñanza , Realidad VirtualRESUMEN
Introduction: A major sublineage within the Mycobacterium tuberculosis (MTB) LAM family characterized by a new in-frame fusion gene Rv3346c/55c was discovered in Rio de Janeiro (Brazil) in 2007, called RDRio, associated to drug resistance. The few studies about prevalence of MTB RDRio strains in Latin America reported values ranging from 3% in Chile to 69.8% in Venezuela, although no information is available for countries like Ecuador. Methods: A total of 814 MTB isolates from years 2012 to 2016 were screened by multiplex PCR for RDRio identification, followed by 24-loci MIRU-VNTR and spoligotyping. Results: A total number of 17 MTB RDRio strains were identified, representing an overall prevalence of 2.09% among MTB strains in Ecuador. While 10.9% of the MTB isolates included in the study were multidrug resistance (MDR), 29.4% (5/17) of the RDRio strains were MDR. Discussion: This is the first report of the prevalence of MTB RDRio in Ecuador, where a strong association with MDR was found, but also a very low prevalence compared to other countries in Latin America. It is important to improve molecular epidemiology tools as a part of MTB surveillance programs in Latin America to track the transmission of potentially dangerous MTB stains associated to MDR TB like MTB RDRio.
Asunto(s)
Genotipo , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Ecuador/epidemiología , Humanos , Prevalencia , Estudios Retrospectivos , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Variación Genética , Antituberculosos/farmacología , Adulto , Masculino , Femenino , Persona de Mediana Edad , Farmacorresistencia Bacteriana Múltiple/genética , AdolescenteRESUMEN
Latin American region is a high-burden setting for tuberculosis where multidrug-resistant tuberculosis (MDR-TB) is among the main challenge to move forward the End TB Strategy goals. It has been shown that MDR-TB is associated to certain Mycobacterium tuberculosis (MTB) lineages like L2-Beijing sublineage or L4-LAM. Although L2-Beijing is present in South America, the L4 lineage is the most prevalent with values ranging from 75% to 99% depending on the country. Within L4, Latin American-Mediterranean (LAM) family is the most prevalent. Moreover, within LAM, RDRio subfamily is present in high prevalence in several countries in South America like Venezuela or Brazil. RDRio has been associated to MDR-TB in several studies in Brazil but more epidemiological information is needed for South America. Here we discuss the problem of MDR-TB in Latin America and the potential threat that RDRio could represent. At this time, more molecular epidemiology studies are necessary to improve TB surveillance programs in Latin America by tracking MTB strains potentially responsible for MDR-TB spread.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Humanos , América Latina/epidemiología , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Prevalencia , Farmacorresistencia Bacteriana MúltipleRESUMEN
Objective: Tuberculosis (TB) is a major public health concern in Ecuador and Colombia, considering that both countries are high-burden TB settings. Molecular epidemiology is crucial to understand the transmission dynamics of Mycobacterium tuberculosis complex (MTBC) and to identify active transmission clusters of regional importance. Methods: We studied the potential transmission of TB between Colombia and Ecuador through the analysis of the population structure of MTBC lineages circulating in the Ecuadorian province of Esmeraldas at the border with Colombia. A total of 105 MTBC strains were characterized by 24-loci MIRU-VNTR and spoligotyping. Results: MTBC lineage 4 is only present in Esmeraldas; no MTBC strains belonging to Lineage 2-sublineage Beijing were found despite its presence in other provinces of Ecuador and, in Colombia. Genotyping results revealed a high degree of diversity for MTBC in Esmeraldas: Neither active transmission clusters within this province nor including MTBC strains from Colombia or other provinces of Ecuador were found. Conclusion: Our data suggest that tuberculosis dynamics in this rural and isolated area may be not related to highly transmitted strains but could be influenced by other health determinants that favor TB relapse such as poverty and poor health system access. Further studies including a larger number of MTBC strains from Esmeraldas are necessary to test this hypothesis.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Ecuador/epidemiología , Estudios Retrospectivos , Colombia/epidemiología , Tuberculosis/epidemiologíaRESUMEN
BACKGROUND: Tuberculosis (TB) is a major public health concern in Ecuador and Peru, both settings of high burden of drug resistance TB. Molecular epidemiology tools are important to understand the transmission dynamics of Mycobacterium tuberculosis Complex (MTBC) and to track active transmission clusters of regional importance. This study is the first to address the transmission of TB between Peru and Ecuador through the population structure of MTBC lineages circulating in the Ecuadorian border province of "El Oro". METHODS: A total number of 56 MTBC strains from this province for years 2012-2015 were included in the study and analyzed by 24-loci MIRU-VNTR and spoligotyping. RESULTS: Genotyping revealed a high degree of diversity for MTBC in "El Oro", without active transmission clusters. MTBC L4 was predominant, with less than 2% of strains belonging to MTBC L2-Beijing. CONCLUSIONS: These results may suggest that TB dynamics in this rural and semi-urban area would not be linked to highly transmitted strains like MTBC L2-Beijing from Peru, but related to TB relapse; although further studies with larger MTBC cultures collection from recent years are needed. Nevertheless, we recommend to reinforce TB surveillance programs in remote rural settings and border regions in Ecuador.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Ecuador/epidemiología , Perú/epidemiología , Repeticiones de Minisatélite , Tuberculosis/epidemiología , Tuberculosis/microbiología , GenotipoRESUMEN
Infections caused by mycobacteria, including Mycobacterium tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM), are a major public health issue worldwide. An accurate diagnosis of mycobacterial species is a challenge for surveillance and treatment, particularly in high-burden settings usually associated with low- and middle-income countries. In this study, we analyzed the clinical performance of two commercial PCR kits designed for the identification and differentiation of MTBC and NTM, available in a high-burden setting such as Ecuador. A total of 109 mycobacteria isolates were included in the study, 59 of which were previously characterized as M. tuberculosis and the other 59 as NTM. Both kits displayed great clinical performance for the identification of M. tuberculosis, with 100% sensitivity. On the other hand, for NTM, one of the kits displayed a good clinical performance with a sensitivity of 94.9% (CI 95%: 89-100%), while the second kit had a reduced sensitivity of 77.1% (CI 95%: 65-89%). In conclusion, one of the kits is a fast and reliable tool for the identification and discrimination of MTBC and NTM from clinical isolates.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Micobacterias no Tuberculosas/genética , Salud Pública , Tuberculosis/diagnóstico , Reacción en Cadena de la PolimerasaRESUMEN
Heavy metal co-contamination in crude oil-polluted environments may inhibit microbial bioremediation of hydrocarbons. The model heavy metal-resistant bacterium Cupriavidus metallidurans CH34 possesses cadmium and mercury resistance, as well as genes related to the catabolism of hazardous BTEX aromatic hydrocarbons. The aims of this study were to analyze the aromatic catabolic potential of C. metallidurans CH34 and to determine the functionality of the predicted benzene catabolic pathway and the influence of cadmium and mercury on benzene degradation. Three chromosome-encoded bacterial multicomponent monooxygenases (BMMs) are involved in benzene catabolic pathways. Growth assessment, intermediates identification, and gene expression analysis indicate the functionality of the benzene catabolic pathway. Strain CH34 degraded benzene via phenol and 2-hydroxymuconic semialdehyde. Transcriptional analyses revealed a transition from the expression of catechol 2,3-dioxygenase (tomB) in the early exponential phase to catechol 1,2-dioxygenase (catA1 and catA2) in the late exponential phase. The minimum inhibitory concentration to Hg (II) and Cd (II) was significantly lower in the presence of benzene, demonstrating the effect of co-contamination on bacterial growth. Notably, this study showed that C. metallidurans CH34 degraded benzene in the presence of Hg (II) or Cd (II).
RESUMEN
B. xenovorans LB400 is a model bacterium for the study of the metabolism of aromatic compounds. The aim of this study was the genomic and functional characterization of a non-ribosomal peptide synthetase containing gene cluster that encodes a siderophore in B. xenovorans LB400. The mba gene cluster from strain LB400 encodes proteins involved in the biosynthesis and transport of a hydroxamate-type siderophore. Strain LB400 has a unique mba gene organization, although mba gene clusters have been observed in diverse Burkholderiales. Bioinformatic analysis revealed the presence of promoters in the mba gene cluster that strongly suggest regulation by the ferric uptake regulator protein (Fur) and by the alternative RNA polymerase extracytoplasmic function sigma factor MbaF. Reverse transcriptase PCR analyses showed the expression of iron-regulated transcriptional units mbaFGHIJKL, mbaN, mbaABCE, mbaO, mbaP and mbaD genes under iron limitation. Chrome azurol S (CAS) assay strongly suggests that strain LB400 synthesized a siderophore under iron limitation. Mass spectrometry ESI-MS and MALDI-TOF-MS analyses revealed that the siderophore is a non-ribosomal peptide, and forms an iron complex with a molecular mass of 676 Da. Based on bioinformatic prediction, CAS assay and MS analyses, we propose that the siderophore is L-Nδ-hydroxy-Nδ-formylOrn-D-ß-hydroxyAsp-L-Ser-L-Nδ-hydroxy-Nδ-formylOrn-1,4-diaminobutane that is closely related to malleobactin-type siderophores reported in B. thailandensis.
Asunto(s)
Proteínas Bacterianas , Burkholderia , Hierro/metabolismo , Familia de Multigenes , Sideróforos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia/genética , Burkholderia/metabolismo , Transporte Iónico/fisiología , Sideróforos/biosíntesis , Sideróforos/genéticaRESUMEN
BACKGROUND: Anaemia frequently coexists with heart failure. Few studies have examined the impact of anaemia on mortality in this population. OBJECTIVE: To assess the prevalence of anaemia in patients with heart failure in an Internal Medicine Unit and its potential effects on mortality. MATERIAL AND METHODS: We evaluated the electronic medical records of 272 patients with heart failure that fulfilled the criteria admitted to the Internal Medicine Unit of Fundación Hospital Alcorcón (Madrid, Spain)between July and December 2003. Uni and multivariate logistic regression analysis for predictors of mortality. RESULTS: Most patients were women (71%), mean age was 82.1+/-9 years, 106 (39.9%) had anaemia (serum haemoglobin levels<12 g/dL), 69 (25%) had renal failure (serum creatinine levels>1.5 mg/dL and 154 patients (57%) had atrial fibrillation. There were 41 deaths (15%). The frequency of anaemia was higher and the haemoglobin levels were lower in the patients who died (65% vs 36%, and 11.2+/-2.4 g/dL vs 12.6+/-2.1g/dL, p<0.001 for both). Increased serum creatinine was also associated with mortality (1.8+/-0.8 vs 1.3+/-0.8 mg/dL p<0.001). Age, gender, atrial fibrillation or the aetiology of heart failure were not associated with mortality in univariate analysis. In contrast, by multivariate logistic regression analysis, haemoglobin (odds ratio [OR] 0, 78 per g/dL, 95%confidence interval [CI] 0.66- 0.923 p<0.01), New York Heart Association functional classification (OR 2.2, 95% Cl 1.2-3.9 p<0.01), and serum creatinine (OR 1.5 per mg/dL, 95% CI 0.98-2.31 p=0.06) were independent predictors of mortality. CONCLUSIONS: Anaemia is a frequent problem among patients with heart failure and it is a significant independent risk factor for death.
Asunto(s)
Anemia/complicaciones , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/mortalidad , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Factores de RiesgoRESUMEN
Aconcagua River basin (Central Chile) harbors diverse economic activities such as agriculture, mining and a crude oil refinery. The aim of this study was to assess environmental drivers of microbial communities in Aconcagua River estuarine soils, which may be influenced by anthropogenic activities taking place upstream and by natural processes such as tides and flood runoffs. Physicochemical parameters were measured in floodplain soils along the estuary. Bacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Pseudomonas, Bacillus and Fungi were studied by DGGE fingerprinting of 16S rRNA gene and ribosomal ITS-1 amplified from community DNA. Correlations between environment and communities were assessed by distance-based redundancy analysis. Mainly hydrocarbons, pH and the composed variable copper/arsenic/calcium but in less extent nitrogen and organic matter/phosphorous/magnesium correlated with community structures at different taxonomic levels. Aromatic hydrocarbons degradation potential by bacterial community was studied. Polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases genes were detected only at upstream sites. Naphthalene dioxygenase ndo genes were heterogeneously distributed along estuary, and related to Pseudomonas, Delftia, Comamonas and Ralstonia. IncP-1 plasmids were mainly present at downstream sites, whereas IncP-7 and IncP-9 plasmids showed a heterogeneous distribution. This study strongly suggests that pH, copper, arsenic and hydrocarbons are main drivers of microbial communities in Aconcagua River estuarine soils.
Asunto(s)
Bacterias/metabolismo , Estuarios , Hongos/metabolismo , Consorcios Microbianos , Hidrocarburos Policíclicos Aromáticos/metabolismo , Ríos/microbiología , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Chile , Dioxigenasas/genética , Hongos/clasificación , Hongos/genética , Complejos Multienzimáticos/genética , Filogenia , Plásmidos/genética , ARN Ribosómico 16S/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Suelo/química , Contaminantes del Suelo/metabolismoRESUMEN
Flavonoids are a large group of plant secondary metabolites that exert various biological and pharmacological effects. In this context, the generation of derivatives is of considerable interest. The introduction of hydroxy groups is of particular relevance, as they are known to be involved in many of the biological interactions and furthermore enable additional modifications, such as glycosylations. Bacterial aryl-hydroxylating dioxygenases (ARHDOs) have proven to be very useful for the conversion of aromatic structures into versatile building blocks for different kinds of derivatizations. Such enzymes have been used with varying success for the oxidation of flavonoids. In order to find better ARHDOs for the hydroxylation of such substrates, we carried out biotransformation trials with a collection of hybrid ARHDOs of different origin, using resting cells of recombinant strains. This identified enzymes able to transform all of the flavonoids examined, typically in yields above 50%. It also showed that moderately reactive substituents of flavonoids, such as hydroxy or amino groups, can lead to spontaneous follow-up reactions with the dienediol structures generated by dioxygenation. A report of flavanone epoxidation, a reaction never before observed to be catalyzed by an ARHDO, is challenged by our results. All ARHDOs examined converted this substrate into a dehydrogenase-transformable dihydrodiol. All dihydrodiols obtained by dioxygenation of the examined flavonoids were successfully re-aromatized into catechols by a bacterial dehydrogenase. These metabolites were usually stable. However, the catechols formed from flavanone and 2'-hydroxy-chalcone, respectively, were interconvertible under mild conditions. Altogether, we isolated and characterized 13 compounds that have not previously been described. The biotransformations reported here give access to novel flavonoid derivatives that may be applied for biological screens as well as for further modification, such as glycodiversification.