Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Infect Immun ; 92(8): e0024924, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38990046

RESUMEN

Ticks are important vectors of disease, particularly in the context of One Health, where tick-borne diseases (TBDs) are increasingly prevalent worldwide. TBDs often involve co-infections, where multiple pathogens co-exist in a single host. Patients with chronic Lyme disease often have co-infections with other bacteria or parasites. This study aimed to create a co-infection model with Borrelia afzelii and tick-borne encephalitis virus (TBEV) in C3H mice and to evaluate symptoms, mortality, and pathogen level compared to single infections. Successful co-infection of C3H mice with B. afzelii and TBEV was achieved. Outcomes varied, depending on the timing of infection. When TBEV infection followed B. afzelii infection by 9 days, TBEV symptoms worsened and virus levels increased. Conversely, mice infected 21 days apart with TBEV showed milder symptoms and lower mortality. Simultaneous infection resulted in mild symptoms and no deaths. However, our model did not effectively infect ticks with TBEV, possibly due to suboptimal dosing, highlighting the challenges of replicating natural conditions. Understanding the consequences of co-infection is crucial, given the increasing prevalence of TBD. Co-infected individuals may experience exacerbated symptoms, highlighting the need for a comprehensive understanding through refined animal models. This study advances knowledge of TBD and highlights the importance of exploring co-infection dynamics in host-pathogen interactions.


Asunto(s)
Coinfección , Modelos Animales de Enfermedad , Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Enfermedad de Lyme , Ratones Endogámicos C3H , Animales , Coinfección/microbiología , Coinfección/virología , Ratones , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Enfermedad de Lyme/microbiología , Encefalitis Transmitida por Garrapatas/virología , Grupo Borrelia Burgdorferi , Femenino
2.
Mol Ecol ; : e17506, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39161118

RESUMEN

The Ornithodoros moubata (Om) soft tick, a vector for diseases like tick-borne human relapsing fever and African swine fever, poses challenges to conventional control methods. With diminishing insecticide efficacy, harnessing the tick's microbiota through innovative approaches like microbiota-driven vaccination emerges as a promising strategy for sustainable and targeted disease control. This study investigated the intricate relationship between Pseudomonas, a keystone taxon in the Om microbiome, and its impact on tick fitness, microbiome structure and network dynamics. Utilizing in silico analyses and empirical vaccination experiments, the role of Pseudomonas within microbial networks in the tick midguts (MG) and salivary glands (SG) of Om was studied. Additionally, the consequences of anti-microbiota vaccines targeting Pseudomonas and Lactobacillus on tick fitness, microbiome diversity and community assembly were explored. The result of the study shows that in Om, Pseudomonas plays a central role in microbial networks, influencing keystone species despite being categorized as peripheral (interacting with 47 different taxa, 13 of which are keystone species). Anti-microbiota vaccination targeting Pseudomonas and Lactobacillus yields distinct effects on tick fitness, with Pseudomonas vaccination significantly impacting female tick survival, while Lactobacillus significantly reduced oviposition and fertility. Microbiome changes post-vaccination reveal diversity alterations, emphasizing the impact of vaccine choice. Community assembly dynamics and network robustness analyses highlight Pseudomonas' pivotal role, in influencing topological features and network resilience. The findings of the study provide comprehensive insights into the intricate dynamics of Om microbial networks and the potential of targeted microbiota-driven vaccines for tick control.

3.
Int Microbiol ; 27(4): 1205-1218, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38151633

RESUMEN

CONTEXT: Pathogens can manipulate microbial interactions to ensure survival, potentially altering the functional patterns and microbiome assembly. The present study investigates how Anaplasma phagocytophilum infection affects the functional diversity, composition, and assembly of the Ixodes scapularis microbiome, with a focus on high central pathways-those characterized by elevated values in centrality metrics such as eigenvector, betweenness, and degree measures, in the microbial community. METHODS: Using previously published data from nymphs' gut V4 region's amplicons of bacterial 16S rRNA, we predicted the functional diversity and composition in control and A. phagocytophilum-infected ticks and inferred co-occurrence networks of taxa and ubiquitous pathways in each condition to associate the high central pathways to the microbial community assembly. RESULTS: Although no differences were observed concerning pathways richness and diversity, there was a significant impact on taxa and functional assembly when ubiquitous pathways in each condition were filtered. Moreover, a notable shift was observed in the microbiome's high central functions. Specifically, pathways related to the degradation of nucleosides and nucleotides emerged as the most central functions in response to A. phagocytophilum infection. This finding suggests a reconfiguration of functional relationships within the microbial community, potentially influenced by the pathogen's limited metabolic capacity. This limitation implies that the tick microbiome may provide additional metabolic resources to support the pathogen's functional needs. CONCLUSIONS: Understanding the metabolic interactions within the tick microbiome can enhance our knowledge of pathogen colonization mechanisms and uncover new disease control and prevention strategies. For example, certain pathways that were more abundant or highly central during infection may represent potential targets for microbiota-based vaccines.


Asunto(s)
Anaplasma phagocytophilum , Ixodes , Microbiota , ARN Ribosómico 16S , Anaplasma phagocytophilum/fisiología , Anaplasma phagocytophilum/genética , Animales , Ixodes/microbiología , ARN Ribosómico 16S/genética , Ehrlichiosis/microbiología , Ninfa/microbiología , Microbioma Gastrointestinal/fisiología
4.
Int Microbiol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172274

RESUMEN

The honeybee (Apis mellifera) is a key pollinator critical to global agriculture, facing threats from various stressors, including the ectoparasitic Varroa mite (Varroa destructor). Previous studies have identified shared bacteria between Varroa mites and honeybees, yet it remains unclear if these bacteria assemble similarly in both species. This study builds on existing knowledge by investigating co-occurrence patterns in the microbiomes of both Varroa mites and honeybees, shedding light on potential interactions. Leveraging 16S rRNA datasets, we conducted co-occurrence network analyses, explored Core Association Networks (CAN) and assess network robustness. Comparative network analyses revealed structural differences between honeybee and mite microbiomes, along with shared core features and microbial motifs. The mite network exhibited lower robustness, suggesting less resistance to taxa extension compared to honeybees. Furthermore, analyses of predicted functional profiling and taxa contribution revealed that common central pathways in the metabolic networks have different taxa contributing to Varroa mites and honeybee microbiomes. The results show that while both microbial systems exhibit functional redundancy, in which different taxa contribute to the functional stability and resilience of the ecosystem, there is evidence for niche specialization resulting in unique contributions to specific pathways in each part of this host-parasite system. The specificity of taxa contribution to key pathways offers targeted approaches to Varroa microbiome management and preserving honeybee microbiome. Our findings provide valuable insights into microbial interactions, aiding farmers and beekeepers in maintaining healthy and resilient bee colonies amid increasing Varroa mite infestations.

5.
Med Vet Entomol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175110

RESUMEN

Research into various bacterial pathogens that can be transmitted between different animals and may have zoonotic potential has led to the discovery of different strains of Bartonella sp. in bats and their associated ectoparasites. Despite their enormous species diversity, only a few studies have focussed on the detection of bacterial pathogens in insectivorous bats of boreal forests and their associated Macronyssidae and Spinturnicidae mites. We collected and molecularly analysed mite samples from forest-dwelling bat species distributed all along the boreal belt of the Palearctic, from Central Europe to Far East. Ectoparasitic mites were pooled for DNA extraction and DNA amplification polymerase chain reaction (PCRs) were conducted to detect the presence of various bacterial (Anaplasmataceae, Bartonella sp., Rickettsia sp., Mycoplasma sp.) and protozoal (Hepatozoon sp.) pathogens. Bartonella sp. DNA was detected in four different mite species (Macronyssidae: Steatonyssus periblepharus and Spinturnicidae: Spinturnix acuminata, Sp. myoti and Sp. mystacinus), with different prevalences of the targeted gene (gltA, 16-23S ribosomal RNA intergenic spacer and ftsZ). Larger pools (>5 samples pooled) were more likely to harbour Bartonella sp. DNA, than smaller ones. In addition, cave-dwelling bat hosts and host generalist mite species are more associated with Bartonella spp. presence. Spinturnicidae mites may transmit several distinct Bartonella strains, which cluster phylogenetically close to Bartonella species known to cause diseases in humans and livestock. Mites with ubiquitous presence may facilitate the long-term maintenance (and even local recurrence) of Bartonella-infestations inside local bat populations, thus acting as continuous reservoirs for Bartonella spp in bats.

6.
BMC Microbiol ; 23(1): 93, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005589

RESUMEN

Bat gut microbiomes are adapted to the specific diets of their hosts. Despite diet variation has been associated with differences in bat microbiome diversity, the influence of diet on microbial community assembly have not been fully elucidated. In the present study, we used available data on bat gut microbiome to characterize the microbial community assembly of five selected bat species (i.e., Miniopterus schreibersii, Myotis capaccinii, Myotis myotis, Myotis pilosus, and Myotis vivesi), using network analysis. These bat species with contrasting habitat and food preferences (i.e., My. capaccinii and My. pilosus can be piscivorous and/or insectivorous; Mi. schreibersii and My. myotis are exclusively insectivorous; while My. vivesi is a marine predator) offer an invaluable opportunity to test the impact of diet on bat gut microbiome assembly. The results showed that My. myotis showed the most complex network, with the highest number of nodes, while My. vivesi has the least complex structured microbiome, with lowest number of nodes in its network. No common nodes were observed in the networks of the five bat species, with My. myotis possessing the highest number of unique nodes. Only three bat species, My. myotis, My. pilosus and My. vivesi, presented a core microbiome and the distribution of local centrality measures of nodes was different in the five networks. Taxa removal followed by measurement of network connectivity revealed that My. myotis had the most robust network, while the network of My. vivesi presented the lowest tolerance to taxa removal. Prediction of metabolic pathways using PICRUSt2 revealed that Mi. schreibersii had significantly higher functional pathway's richness compared to the other bat species. Most of predicted pathways (82%, total 435) were shared between all bat species, while My. capaccinii, My. myotis and My. vivesi, but no Mi. schreibersii or My. pilosus, showed specific pathways. We concluded that despite similar feeding habits, microbial community assembly can differ between bat species. Other factors beyond diet may play a major role in bat microbial community assembly, with host ecology, sociality and overlap in roosts likely providing additional predictors governing gut microbiome of insectivorous bats.


Asunto(s)
Quirópteros , Microbioma Gastrointestinal , Microbiota , Animales , Ecología , Dieta/veterinaria
7.
Mol Ecol ; 32(16): 4660-4676, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37366236

RESUMEN

Most tick-borne pathogens (TBPs) are secondarily acquired by ticks during feeding on infected hosts, which imposes 'priority effect' constraints, as arrival order influences the establishment of new species in a microbial community. Here we tested whether once acquired, TBPs contribute to bacterial microbiota functioning by increasing community stability. For this, we used Hyalomma marginatum and Rhipicephalus bursa ticks collected from cattle in different locations of Corsica and combined 16S rRNA amplicon sequencing and co-occurrence network analysis, with high-throughput pathogen detection, and in silico removal of nodes to test for impact of rickettsial pathogens on network properties. Despite its low centrality, Rickettsia showed preferential connections in the networks, notably with a keystone taxon in H. marginatum, suggesting facilitation of Rickettsia colonisation by the keystone taxon. In addition, conserved patterns of community assembly in both tick species were affected by Rickettsia removal, suggesting that privileged connections of Rickettsia in the networks make this taxon a driver of community assembly. However, Rickettsia removal had minor impact on the conserved 'core bacterial microbiota' of H. marginatum and R. bursa. Interestingly, networks of the two tick species with Rickettsia have similar node centrality distribution, a property that is lost after Rickettsia removal, suggesting that this taxon drives specific hierarchical interactions between bacterial microbes in the microbiota. The study indicates that tick-borne Rickettsia play a significant role in the tick bacterial microbiota, despite their low centrality. These bacteria are influential and contribute to the conservation of the 'core bacterial microbiota' while also promoting community stability.


Asunto(s)
Ixodidae , Rhipicephalus , Rickettsia , Animales , Bovinos , Rhipicephalus/genética , ARN Ribosómico 16S/genética , Rickettsia/genética , Ixodidae/genética , Ixodidae/microbiología , Francia
8.
Microb Ecol ; 86(4): 2400-2413, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37249591

RESUMEN

Bacterial microbiota play an important role in the fitness of arthropods, but the bacterial microflora in the parasitic mite Dermanyssus gallinae is only partially explored; there are gaps in our understanding of the microbiota localization and in our knowledge of microbial community assembly. In this work, we have visualized, quantified the abundance, and determined the diversity of bacterial occupancy, not only across developmental stages of D. gallinae, but also in the midgut of micro-dissected female D. gallinae mites. We explored community assembly and the presence of keystone taxa, as well as predicted metabolic functions in the microbiome of the mite. The diversity of the microbiota and the complexity of co-occurrence networks decreased with the progression of the life cycle. However, several bacterial taxa were present in all samples examined, indicating a core symbiotic consortium of bacteria. The relatively higher bacterial abundance in adult females, specifically in their midguts, implicates a function linked to the biology of D. gallinae mites. If such an association proves to be important, the bacterial microflora qualifies itself as an acaricidal or vaccine target against this troublesome pest.


Asunto(s)
Infestaciones por Ácaros , Ácaros , Enfermedades de las Aves de Corral , Animales , Femenino , Pollos/parasitología , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/prevención & control , Ácaros/microbiología , Estadios del Ciclo de Vida , Bacterias/genética , Infestaciones por Ácaros/parasitología , Infestaciones por Ácaros/prevención & control
9.
BMC Vet Res ; 19(1): 239, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978522

RESUMEN

BACKGROUND: Dirofilarioses are widespread diseases caused by mosquito-borne nematodes of the family Onchocercidae, genus Dirofilaria. The major etiologic agent of canine dirofilariosis in the American continent is the zoonotic parasite Dirofilaria immitis. Existing reports of filarioid nematodes in Cuba are based solely on morphological and immunological analysis which do not allow unambiguous identification and/or direct detection of causal agents. RESULTS: Here we present the molecular characterization of filarioid nematodes found in a dog in Cuba. Based on the molecular and phylogenetic analysis of the 5.8S-ITS2-28S region and cox1 gene fragments, the worms were unambiguously classified as D. immitis. Sequence analysis showed high identity of the gene fragments in this study with others previously obtained from D. immitis found in dogs, wolfs and jackals but also from mosquito vectors of D. immitis. CONCLUSIONS: Further studies are guarantee to better understand the epidemiological impact of canine dirofilariosis in Cuba as well as the competence of different species of culicid mosquitoes as vectors of Dirofilaria in the country.


Asunto(s)
Culicidae , Dirofilaria immitis , Dirofilaria repens , Dirofilariasis , Enfermedades de los Perros , Animales , Perros , Dirofilaria immitis/genética , Dirofilariasis/epidemiología , Cuba/epidemiología , Filogenia , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/parasitología , Chacales , Dirofilaria repens/genética
10.
Euro Surveill ; 28(34)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37616118

RESUMEN

The last report of Crimean-Congo haemorrhagic fever (CCHF) in North Macedonia was more than 50 years ago in the northwest. We report on a fatal CCHF case following a Hyalomma tick bite in the east of the country in July 2023. Tracing of 67 contacts identified CCHF in one healthcare worker (HCW) providing care for the patient. Monitoring of contacts is concluded (including further 11 HCW contacts), thus far 28 days after the death of the case no additional cases were identified.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Ixodidae , Animales , Humanos , Personal de Salud , Fiebre Hemorrágica de Crimea/diagnóstico , Fiebre Hemorrágica de Crimea/epidemiología , República de Macedonia del Norte/epidemiología , Trazado de Contacto
11.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37628837

RESUMEN

The Protein Phosphatase type 1 catalytic subunit (PP1c) (PF3D7_1414400) operates in combination with various regulatory proteins to specifically direct and control its phosphatase activity. However, there is little information about this phosphatase and its regulators in the human malaria parasite, Plasmodium falciparum. To address this knowledge gap, we conducted a comprehensive investigation into the structural and functional characteristics of a conserved Plasmodium-specific regulator called Gametocyte EXported Protein 15, GEXP15 (PF3D7_1031600). Through in silico analysis, we identified three significant regions of interest in GEXP15: an N-terminal region housing a PP1-interacting RVxF motif, a conserved domain whose function is unknown, and a GYF-like domain that potentially facilitates specific protein-protein interactions. To further elucidate the role of GEXP15, we conducted in vitro interaction studies that demonstrated a direct interaction between GEXP15 and PP1 via the RVxF-binding motif. This interaction was found to enhance the phosphatase activity of PP1. Additionally, utilizing a transgenic GEXP15-tagged line and live microscopy, we observed high expression of GEXP15 in late asexual stages of the parasite, with localization predominantly in the nucleus. Immunoprecipitation assays followed by mass spectrometry analyses revealed the interaction of GEXP15 with ribosomal- and RNA-binding proteins. Furthermore, through pull-down analyses of recombinant functional domains of His-tagged GEXP15, we confirmed its binding to the ribosomal complex via the GYF domain. Collectively, our study sheds light on the PfGEXP15-PP1-ribosome interaction, which plays a crucial role in protein translation. These findings suggest that PfGEXP15 could serve as a potential target for the development of malaria drugs.


Asunto(s)
Bioensayo , Plasmodium falciparum , Humanos , Animales , Plasmodium falciparum/genética , Proteína Fosfatasa 1/genética , Animales Modificados Genéticamente , Dominio Catalítico
12.
Immunology ; 167(2): 139-153, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35752944

RESUMEN

Trained immunity (TRAIM) may be defined as a form of memory where innate immune cells such as monocytes, macrophages, dendritic and natural killer (NK) cells undergo an epigenetic reprogramming that enhances their primary defensive capabilities. Cross-pathogen protective TRAIM can be triggered in different hosts by exposure to live microbes or microbe-derived products such as heat-inactivated Mycobacterium bovis or with the glycan α-Gal to elicit protective responses against several pathogens. We review the TRAIM paradigm using two models representing distinct scales of immune sensitization: the whole bacterial cell and one of its building blocks, the polysaccharides or glycans. Observations point out to macrophage lytic capabilities and cytokine regulation as two key components in non-specific innate immune responses against infections. The study of the TRAIM response deserves attention to better characterize the evolution of host-pathogen cooperation both for identifying the aetiology of some diseases and for finding new therapeutic strategies. In this field, the zebrafish provides a convenient and complete biological system that could help to deepen in the knowledge of TRAIM-mediated mechanisms in pathogen-host interactions.


Asunto(s)
Infecciones por Mycobacterium , Mycobacterium bovis , Animales , Citocinas , Modelos Animales de Enfermedad , Calor , Inmunidad Innata , Polisacáridos , Pez Cebra
13.
Microb Ecol ; 84(4): 1224-1235, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34817640

RESUMEN

Variations in the composition and diversity of tick microbiome due to high temperatures may influence the hierarchy of community members as a response to environmental change. Modifications in the community structure are hypothesized to drive alterations in the presence and/or abundance of functional pathways in the bacterial metagenome. In this study, this hypothesis was tested by using published 16S rRNA datasets of Ixodes scapularis males incubated at different temperatures (i.e., 4, 20, 30, and 37 °C) in a laboratory setting. Changes in community structure and functional profiles in response to temperature shifts were measured using co-occurrence networks and metagenome inference. Results from laboratory-reared ticks were then compared with those of field-collected ticks. The results from laboratory-reared ticks showed that high temperature altered the structure of the microbial community and decreased the number of keystone taxa. Notably, four taxa were identified as keystone in all the temperatures, and the functional diversity of the tick microbiome was contained in the four thermostable keystone their associated bacterial taxa. Three of the thermostable keystone taxa were also found in free-living ticks collected in Massachusetts. Moreover, the comparison of functional profiles of laboratory-reared and field-collected ticks revealed the existence of an important set of metabolic pathways that were common among the different datasets. Similar to the laboratory-reared ticks, the keystone taxa identified in field-collected ticks alongside their consortia (co-occurring taxa) were sufficient to retain the majority of the metabolic pathways in the functional profile. These results suggest that keystone taxa are essential in the stability and the functional resiliency of the tick microbiome under heat stress.


Asunto(s)
Ixodes , Microbiota , Masculino , Animales , Ixodes/microbiología , ARN Ribosómico 16S/genética , Microbiota/genética , Bacterias/genética , Respuesta al Choque Térmico
14.
Biochem J ; 478(9): 1783-1794, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33988703

RESUMEN

Ticks and the pathogens they transmit, including bacteria, viruses, protozoa, and helminths, constitute a growing burden for human and animal health worldwide. The ability of some animal species to acquire resistance to blood-feeding by ticks after a single or repeated infestation is known as acquired tick resistance (ATR). This resistance has been associated to tick-specific IgE response, the generation of skin-resident memory CD4+ T cells, basophil recruitment, histamine release, and epidermal hyperplasia. ATR has also been associated with protection to tick-borne tularemia through allergic klendusity, a disease-escaping ability produced by the development of hypersensitivity to an allergen. In addition to pathogen transmission, tick infestation in humans is associated with the α-Gal syndrome (AGS), a type of allergy characterized by an IgE response against the carbohydrate Galα1-3Gal (α-Gal). This glycan is present in tick salivary proteins and on the surface of tick-borne pathogens such as Borrelia burgdorferi and Anaplasma phagocytophilum, the causative agents of Lyme disease and granulocytic anaplasmosis. Most α-Gal-sensitized individuals develop IgE specific against this glycan, but only a small fraction develop the AGS. This review summarizes our current understanding of ATR and its impact on the continuum α-Gal sensitization, allergy, and the AGS. We propose that the α-Gal-specific IgE response in humans is an evolutionary adaptation associated with ATR and allergic klendusity with the trade-off of developing AGS.


Asunto(s)
Anaplasmosis/inmunología , Resistencia a la Enfermedad , Hipersensibilidad a los Alimentos/inmunología , Hiperplasia/inmunología , Enfermedad de Lyme/inmunología , Garrapatas/inmunología , Tularemia/inmunología , Alérgenos/administración & dosificación , Anaplasma phagocytophilum/inmunología , Anaplasma phagocytophilum/patogenicidad , Anaplasmosis/etiología , Anaplasmosis/patología , Anaplasmosis/prevención & control , Animales , Basófilos/inmunología , Basófilos/patología , Borrelia burgdorferi/inmunología , Borrelia burgdorferi/patogenicidad , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Epidermis/inmunología , Epidermis/parasitología , Hipersensibilidad a los Alimentos/etiología , Hipersensibilidad a los Alimentos/patología , Hipersensibilidad a los Alimentos/prevención & control , Interacciones Huésped-Parásitos/inmunología , Humanos , Hiperplasia/etiología , Hiperplasia/patología , Inmunoglobulina E/biosíntesis , Memoria Inmunológica , Enfermedad de Lyme/etiología , Enfermedad de Lyme/patología , Enfermedad de Lyme/prevención & control , Garrapatas/química , Garrapatas/patogenicidad , Tularemia/etiología , Tularemia/patología , Tularemia/prevención & control
15.
Euro Surveill ; 27(42)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36268740

RESUMEN

Mediterranean spotted fever-like illness (MSF-like illness) is a tick-borne disease caused by Rickettsia sibirica mongolitimonae first reported in France more than 25 years ago. Until today, more than 50 cases of MSF-like illness have been reported in different regions of Europe and Africa, highlighting variable clinical manifestation. Here we report a case of MSF-like illness following a bite from a Hyalomma tick in the Skopje region of North Macedonia.


Asunto(s)
Fiebre Botonosa , Infecciones por Rickettsia , Rickettsia , Humanos , Animales , Infecciones por Rickettsia/diagnóstico , Infecciones por Rickettsia/microbiología , Fiebre Botonosa/diagnóstico , República de Macedonia del Norte , Rickettsia/genética
16.
Expert Rev Proteomics ; 18(12): 1099-1116, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34904495

RESUMEN

BACKGROUND: Ticks are obligate hematophagous arthropods that synthesize the glycan Galα1-3Galß1-(3)4GlcNAc-R (α-Gal) associated with the alpha-gal syndrome (AGS) or allergy to mammalian meat consumption. RESEARCH DESIGN AND METHODS: In this study, we used a proteomics approach to characterize tick proteins in salivary glands (sialome SG), secreted saliva (sialome SA) and with α-Gal modification (alphagalactome SG and SA) in model tick species associated with the AGS in the United States (Amblyomma americanum) and Australia (Ixodes holocyclus). Selected proteins reactive to sera (IgE) from patients with AGS were identified to advance in the identification of possible proteins associated with the AGS. For comparative analysis, the α-Gal content was measured in various tick species. RESULTS: The results confirmed that ticks produce proteins with α-Gal modifications and secreted into saliva during feeding. Proteins identified in tick alphagalactome SA by sera from patients with severe AGS symptomatology may constitute candidate disease biomarkers. CONCLUSIONS: The results support the presence of tick-derived proteins with α-Gal modifications in the saliva with potential implications in AGS and other disorders and protective capacity against tick infestations and pathogen infection. Future research should focus on the characterization of the function of tick glycoproteins with α-Gal in tick biology and AGS.


Asunto(s)
Saliva , Garrapatas , Animales , Biomarcadores , Hipersensibilidad a los Alimentos , Humanos , Glándulas Salivales
17.
J Med Virol ; 93(4): 2065-2075, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33009829

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide. Characterization of the immunological mechanisms involved in disease symptomatology and protective response is important to progress in disease control and prevention. Humans evolved by losing the capacity to synthesize the glycan Galα1-3Galß1-(3)4GlcNAc-R (α-Gal), which resulted in the development of a protective response against pathogenic viruses and other microorganisms containing this modification on membrane proteins mediated by anti-α-Gal immunoglobulin M (IgM)/IgG antibodies produced in response to bacterial microbiota. In addition to anti-α-Gal antibody-mediated pathogen opsonization, this glycan induces various immune mechanisms that have shown protection in animal models against infectious diseases without inflammatory responses. In this study, we hypothesized that the immune response to α-Gal may contribute to the control of COVID-19. To address this hypothesis, we characterized the antibody response to α-Gal in patients at different stages of COVID-19 and in comparison with healthy control individuals. The results showed that while the inflammatory response and the anti-SARS-CoV-2 (Spike) IgG antibody titers increased, reduction in anti-α-Gal IgE, IgM, and IgG antibody titers and alteration of anti-α-Gal antibody isotype composition correlated with COVID-19 severity. The results suggested that the inhibition of the α-Gal-induced immune response may translate into more aggressive viremia and severe disease inflammatory symptoms. These results support the proposal of developing interventions such as probiotics based on commensal bacteria with α-Gal epitopes to modify the microbiota and increase α-Gal-induced protective immune response and reduce severity of COVID-19.


Asunto(s)
Anticuerpos Antivirales/análisis , COVID-19/inmunología , Disacáridos/inmunología , Inmunidad Humoral , Anciano , Anciano de 80 o más Años , Anticuerpos Antibacterianos/análisis , COVID-19/diagnóstico , Epítopos/inmunología , Femenino , Humanos , Inmunoglobulina G/análisis , Masculino , Microbiota/inmunología , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , España
18.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34445625

RESUMEN

Arthropod antimicrobial peptides (AMPs) offer a promising source of new leads to address the declining number of novel antibiotics and the increasing prevalence of multidrug-resistant bacterial pathogens. AMPs with potent activity against Gram-negative bacteria and distinct modes of action have been identified in insects and scorpions, allowing the discovery of AMP combinations with additive and/or synergistic effects. Here, we tested the synergistic activity of two AMPs, from the dung beetle Copris tripartitus (CopA3) and the scorpion Heterometrus petersii (Hp1090), against two strains of Escherichia coli. We also tested the antibacterial activity of two hybrid peptides generated by joining CopA3 and Hp1090 with linkers comprising two (InSco2) or six (InSco6) glycine residues. We found that CopA3 and Hp1090 acted synergistically against both bacterial strains, and the hybrid peptide InSco2 showed more potent bactericidal activity than the parental AMPs or InSco6. Molecular dynamics simulations revealed that the short linker stabilizes an N-terminal 310-helix in the hybrid peptide InSco2. This secondary structure forms from a coil region that interacts with phosphatidylethanolamine in the membrane bilayer model. The highest concentration of the hybrid peptides used in this study was associated with stronger hemolytic activity than equivalent concentrations of the parental AMPs. As observed for CopA3, the increasing concentration of InSco2 was also cytotoxic to BHK-21 cells. We conclude that AMP hybrids linked by glycine spacers display potent antibacterial activity and that the cytotoxic activity can be modulated by adjusting the nature of the linker peptide, thus offering a strategy to produce hybrid peptides as safe replacements or adjuncts for conventional antibiotic therapy.


Asunto(s)
Antibacterianos/farmacología , Artrópodos/química , Bacterias/efectos de los fármacos , Glicina/química , Hemólisis/efectos de los fármacos , Riñón/efectos de los fármacos , Proteínas Citotóxicas Formadoras de Poros/farmacología , Animales , Antibacterianos/química , Apoptosis , Células Cultivadas , Cricetinae , Ratones , Proteínas Citotóxicas Formadoras de Poros/química
19.
BMC Evol Biol ; 19(1): 54, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760200

RESUMEN

BACKGROUND: The evolutionary history of a species is frequently derived from molecular sequences, and the resulting phylogenetic trees do not include explicit functional information. Here, we aimed to assess the functional relationships among bacteria in the Spirochaetes phylum, based on the biological processes of 42,489 proteins in reference proteomes of 34 Spirochaetes species. We tested the hypothesis that the species in the genus Borrelia might be sufficiently different to warrant splitting them into two separate genera. RESULTS: A detrended canonical analysis demonstrated that the presence/absence of biological processes among selected bacteria contained a strong phylogenetic signal, which did not separate species of Borrelia. We examined the ten biological processes in which most proteins were involved consistently. This analysis demonstrated that species in Borrelia were more similar to each other than to free-life species (Sediminispirochaeta, Spirochaeta, Sphaerochaeta) or to pathogenic species without vectors (Leptospira, Treponema, Brachyspira), which are highly divergent. A dendrogram based on the presence/absence of proteins in the reference proteomes demonstrated that distances between species of the same genus among free-life or pathogenic non-vector species were higher than the distances between the 19 species (27 strains) of Borrelia. A phyloproteomic network supported the close functional association between species of Borrelia. In the proteome of 27 strains of Borrelia, only a few proteins had evolved separately, in the relapsing fever and Lyme borreliosis groups. The most prominent Borrelia proteins and processes were a subset of those also found in free-living and non-vectored pathogenic species. In addition, the functional innovation (i.e., unique biological processes or proteins) of Borrelia was very low, compared to other genera of Spirochaetes. CONCLUSIONS: We found only marginal functional differences among Borrelia species. Phyloproteomic networks that included all pairwise combinations between species, proteins, and processes were more effective than other methods for evaluating the evolutionary relationships among taxa. With the limitations of data availability, our results did not support a split of the arthropod-transmitted spirochaetes into the proposed genera, Borrelia and Borreliella.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia/metabolismo , Filogenia , Proteómica , Animales , Biodiversidad , Análisis Multivariante , Proteoma/metabolismo , Especificidad de la Especie
20.
Parasitol Res ; 118(6): 1993-1998, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31001677

RESUMEN

Antimicrobial peptides (AMPs) are important components of the vertebrate and invertebrate innate immune systems. Although AMPs are widely recognized for their broad-spectrum activity against bacteria, fungi, and viruses, their activity against protozoan parasites has not been investigated in detail. In this study, we tested 10 AMPs from three different insect species: the greater wax moth Galleria mellonella (cecropin A-D), the fruit fly Drosophila melanogaster (drosocin, Mtk-1 and Mtk-2), and the blow fly Lucilia sericata (LSerPRP-2, LSerPRP-3 and stomoxyn). We tested each AMP against the protozoan parasite Plasmodium falciparum which is responsible for the most severe form of malaria in humans. We also evaluated the impact of these insect AMPs on mouse and pig erythrocytes. Whereas all AMPs showed low hemolytic effects towards mouse and pig erythrocytes, only D. melanogaster Mtk-1 and Mtk-2 significantly inhibited the growth of P. falciparum at low concentrations. Mtk-1 and Mtk-2 could therefore be considered as leads for the development of antiparasitic drugs targeting the clinically important asexual blood stage of P. falciparum.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Antiparasitarios/farmacología , Proteínas de Drosophila/farmacología , Drosophila melanogaster/metabolismo , Plasmodium falciparum/efectos de los fármacos , Animales , Antiinfecciosos/farmacología , Drosophila melanogaster/efectos de los fármacos , Glicopéptidos/farmacología , Humanos , Malaria Falciparum/tratamiento farmacológico , Ratones , Mariposas Nocturnas/metabolismo , Plasmodium falciparum/crecimiento & desarrollo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA