Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Rev Biol Trop ; 62(4): 1549-63, 2014 Dec.
Artículo en Español | MEDLINE | ID: mdl-25720187

RESUMEN

Invasions by exotic woody species are threatening ecosystem functions worldwide. The spread and subsequent replacement of native forest by exotic dominated stands is particularly evident nearby urban centers were exotic propagule pressure is highest. Yet, there is a lack of information on the environmental factors that underlie these replacements. In this study we addressed the following questions: (1) is there a local spatial segregation between the dominant native and exotic woody species? and (2) if this local segregation does exist, is it driven by environmental features? For this, in 2010 we established 31 plots distributed along 16 sampling sites where we surveyed the composition and abundance of all woody species with a basal diameter ≥ 5 cm. To characterize the environment of each plot, we measured the topographic position (slope, exposure) and different properties such as soil physics (bulk density, soil impedance), structure (soil deep, texture) and chemical characteristics (pH, nutrient and water content). Through a cluster analysis we were able to identify five different woody communities in coexistence: (1) Woodlands dominated by the exotic Ligustrum lucidum; (2) Mixed woodlands dominated by the native Lithraea molleoides and the exotic Celtis australis; (3) Scrublands dominated by the native Condalia buxifolia; (4) Scrublands dominated by the exotic Cotoneaster glaucophyllus, and (5) Scrubby grasslands with the exotic Pyracantha angustifolia. These communities were all associated with different local topographic and edaphic features. The environmental segregation among the identified communities suggests that woody invaders have the potential to colonize almost all the environments of the study site (though varying in the identity of the dominant exotic species). The observed patterns, even being restricted to a single well invaded area of mountain Chaco, may posit the spread of woody invaders towards native communities in the region.


Asunto(s)
Ecosistema , Bosques , Especies Introducidas , Madera/crecimiento & desarrollo , Argentina
2.
Rev Biol Trop ; 61(2): 501-14, 2013 Jun.
Artículo en Español | MEDLINE | ID: mdl-23885569

RESUMEN

Seedlings growth and survival of five Acacia (Fabaceae) species that coexists in neotropical semi-arid forests of Argentina, under different light and water availability conditions. Seedling establishment is one of the most risky stages of plants, especially in arid and semiarid regions, where low water availability and high solar radiation influence its emergence, development and survival. In seasonally dry xerophytic forests occurring in North-Western Córdoba, central Argentina, five neotropical species of Acacia co-exist: A. aroma, A. caven, A. atramentaria, A. gilliesii and A. praecox. With the aim to evaluate growth variables and survival of these five species seedlings, in response to water stress and different light availability conditions, a greenhouse experiment was undertaken from March to June of 2010. Although small differences were found between species (F = 5.66, p = 0.001), all of them showed high percentages of seedling survival in response to different light and water treatments, suggesting that seedlings would be tolerant to water stress and could be established both in light and shade. On the other hand, although all species showed an increase in growth in light conditions and without water stress, we have found some trends towards a greater growth in the seedlings ofA. aroma, A. caven and A. atramentaria when compared to those of A. praecox and A. gilliessi in most of the variables considered (F = 41.9, p < 0.0001; F = 7.06, p < 0.0001; F = 53.59, p < 0.0001). This pattern was confirmed through a cluster analysis that classified the species in two main groups. These results, together with others already reported, would indicate a regenerative niche differentiation that might be favoring the regional coexistence of these five species in semiarid forests in central Argentina.


Asunto(s)
Acacia/crecimiento & desarrollo , Luz , Plantones/crecimiento & desarrollo , Árboles , Agua , Acacia/clasificación , Argentina , Clima Tropical
3.
Mem Inst Oswaldo Cruz ; 107(2): 231-7, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22415263

RESUMEN

The association between land use and land cover changes between 1979-2004 in a 2.26-million-hectare area south of the Gran Chaco region and Trypanosoma cruzi infection in rural communities was analysed. The extent of cultural land, open and closed forests and shrubland up to 3,000 m around rural communities in the north, northwest and west of the province of Córdoba was estimated using Landsat satellite imagery. The T. cruzi prevalence was estimated with a cross-sectional serological survey conducted in the rural communities. The land cover showed the same patterns in the 1979, 1999 and 2004 satellite imagery in both the northwest and west regions, with shrinking regions of cultured land and expanding closed forests away from the community. The closed forests and agricultural land coverage in the north region showed the same trend as in the northwest and west regions in 1979 but not in 1999 or 2004. In the latter two years, the coverage remote from the communities was either constant or changed in opposite ways from that of the northwest and west regions. The changes in closed forests and cultured vegetation alone did not have a significant, direct relationship with the occurrence of rural communities with at least one person infected by T. cruzi. This study suggests that the overall decrease in the prevalence of T. cruzi is a consequence of a combined effect of vector control activities and changes in land use and land cover.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Enfermedad de Chagas/epidemiología , Insectos Vectores , Triatoma , Trypanosoma cruzi/inmunología , Adolescente , Adulto , Agricultura , Animales , Argentina/epidemiología , Enfermedad de Chagas/transmisión , Niño , Estudios Transversales , Humanos , Prevalencia , Población Rural , Árboles
4.
Conserv Biol ; 23(5): 1167-75, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19765035

RESUMEN

Not all species are likely to be equally affected by habitat fragmentation; thus, we evaluated the effects of size of forest remnants on trophically linked communities of plants, leaf-mining insects, and their parasitoids. We explored the possibility of differential vulnerability to habitat area reduction in relation to species-specific and food-web traits by comparing species-area regression slopes. Moreover, we searched for a synergistic effect of these traits and of trophic level. We collected mined leaves and recorded plant, leaf miner, and parasitoid species interactions in five 100-m2 transects in 19 Chaco Serrano woodland remnants in central Argentina. Species were classified into extreme categories according to body size, natural abundance, trophic breadth, and trophic level. Species-area slopes differed between groups with extreme values of natural abundance or trophic specialization. Nevertheless, synergistic effects of life-history and food-web traits were only found for trophic level and trophic breadth: area-related species loss was highest for specialist parasitoids. It has been suggested that species position within interaction webs could determine their vulnerability to extinction. Our results provide evidence that food-web parameters, such as trophic level and trophic breadth, affect species sensitivity to habitat fragmentation.


Asunto(s)
Ecosistema , Extinción Biológica , Cadena Alimentaria , Argentina , Especificidad de la Especie
5.
Science ; 351(6272): 457, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26823419

RESUMEN

Tredennick et al. criticize one of our statistical analyses and emphasize the low explanatory power of models relating productivity to diversity. These criticisms do not detract from our key findings, including evidence consistent with the unimodal constraint relationship predicted by the humped-back model and evidence of scale sensitivities in the form and strength of the relationship.


Asunto(s)
Biodiversidad , Pradera , Desarrollo de la Planta
6.
PLoS One ; 10(12): e0142855, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26630387

RESUMEN

The context in which a forest exists strongly influences its function and sustainability. Unveiling the multi-scale nature of forest fragmentation context is crucial to understand how human activities affect the spatial patterns of forests across a range of scales. However, this issue remains almost unexplored in subtropical ecosystems. In this study, we analyzed temporal changes (1979-2010) in forest contexts in the Argentinean dry Chaco at multiple extents. We classified forests over the last three decades based on forest context amount (Pf) and structural connectivity (Pff), which were measured using a moving window approach fixed at eight different extents (from local, ~ 6 ha, to regional, ~ 8300 ha). Specific multi-scale forest context profiles (for the years 1979 and 2010) were defined by projecting Pf vs. Pff mean values and were compared across spatial extents. The distributions of Pf across scales were described by scalograms and their shapes over time were compared. The amount of agricultural land and rangelands across the scales were also analyzed. The dry Chaco has undergone an intensive process of fragmentation, resulting in a shift from landscapes dominated by forests with gaps of rangelands to landscapes where small forest patches are embedded in agricultural lands. Multi-scale fragmentation analysis depicted landscapes in which local exploitation, which perforates forest cover, occurs alongside extensive forest clearings, reducing forests to small and isolated patches surrounded by agricultural lands. In addition, the temporal diminution of Pf's variability along with the increment of the mean slope of the Pf 's scalograms, indicate a simplification of the spatial pattern of forest over time. The observed changes have most likely been the result of the interplay between human activities and environmental constraints, which have shaped the spatial patterns of forests across scales. Based on our results, strategies for the conservation and sustainable management of the dry Chaco should take into account both the context of each habitat location and the scales over which a forest pattern might be preserved, altered or restored.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Bosques , Clima Tropical , Argentina , Monitoreo del Ambiente , Humanos , Factores de Tiempo
7.
Science ; 349(6245): 302-5, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26185249

RESUMEN

The search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it. Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents. The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity.


Asunto(s)
Biodiversidad , Pradera , Desarrollo de la Planta , Biomasa , Estrés Fisiológico
8.
Rev. biol. trop ; Rev. biol. trop;62(4): 1673-1681, oct.-dic. 2014.
Artículo en Español | LILACS | ID: lil-753710

RESUMEN

Woody species composition in invaded communities from mountains of central Argentina: their relations with local environmental factors. Invasions by exotic woody species are threatening ecosystem functions worldwide. The spread and subsequent replacement of native forest by exotic dominated stands is particularly evident nearby urban centers were exotic propagule pressure is highest. Yet, there is a lack of information on the environmental factors that underlie these replacements. In this study we addressed the following questions: (1) is there a local spatial segregation between the dominant native and exotic woody species? and (2) if this local segregation does exist, is it driven by environmental features?. For this, in 2010 we established 31 plots distributed along 16 sampling sites where we surveyed the composition and abundance of all woody species with a basal diameter ≥ 5cm. To characterize the environment of each plot, we measured the topographic position (slope, exposure) and different properties such as soil physics (bulk density, soil impedance), structure (soil deep, texture) and chemical characteristics (pH, nutrient and water content). Through a cluster analysis we were able to identify five different woody communities in coexistence: (1) Woodlands dominated by the exotic Ligustrum lucidum; (2) Mixed woodlands dominated by the native Lithraea molleoides and the exotic Celtis australis; (3) Scrublands dominated by the native Condalia buxifolia; (4) Scrublands dominated by the exotic Cotoneaster glaucophyllus, and (5) Scrubby grasslands with the exotic Pyracantha angustifolia. These communities were all associated with different local topographic and edaphic features. The environmental segregation among the identified communities suggests that woody invaders have the potential to colonize almost all the environments of the study site (though varying in the identity of the dominant exotic species). The observed patterns, even being restricted to a single well invaded area of mountain Chaco, may posit the spread of woody invaders towards native communities in the region.


En todo el mundo, las invasiones de especies leñosas exóticas están amenazando las funciones ecosistémicas. La dispersión y el subsecuente reemplazo de bosques de especies nativas por comunidades dominadas por exóticas es evidente, particularmente, en proximidad a centros urbanos donde la presión de propágulos de especies exóticas es alta. Sin embargo, existe una falta de información sobre los factores ambientales que subyacen este reemplazo. En este estudio nos propusimos responder las siguientes preguntas: (1) ¿se observa una segregación espacial a escala local entre especies leñosas exóticas y/o nativas dominantes?, y (2) si existe esa segregación, ¿está asociada a variables ambientales? En el 2010 se establecieron 31 parcelas distribuidas en 16 laderas en los bosques Chaqueños de las Sierras de Córdoba, en Argentina central. En cada uno de los sitios de muestreo se relevó la composición y abundancia de todas las especies leñosas con un diámetro a la altura de la base superior a 5cm. Para caracterizar el ambiente en cada una de las parcelas medimos la posición topográfica (pendiente y orientación) y algunas propiedades asociadas con la física (densidad aparente y compactación), estructura (profundidad y textura) y con la química (pH y el contenido de nutrientes y agua) del suelo. A través, de un análisis jerárquico de agrupamiento, se identificaron cinco comunidades de leñosas coexistiendo: (1) Bosques dominados por Ligustrum lucidum, (2) Bosques mixtos dominados por Lithraea molleoides y Celtis australis, (3) Matorrales de Condalia buxifolia, (4) Matorrales de Cotoneaster glaucophyllus, y (5) Pajonales con emergentes de Pyracantha angustifolia. Estas comunidades se asociaron diferencialmente a las variables topográficas y edáficas locales. La segregación ambiental observada sugiere que las especies invasoras tienen una capacidad potencial para colonizar casi todos los ambientes en el área de estudio (variando la identidad de la invasora). En conjunto, los patrones descritos, aunque circunscriptos a un área de Chaco Serrano con un avanzado grado de invasión, plantearían un escenario de posible expansión de las leñosas exóticas sobre las comunidades nativas.


Asunto(s)
Ecosistema , Bosques , Especies Introducidas , Madera/crecimiento & desarrollo , Argentina
9.
Rev. biol. trop ; Rev. biol. trop;61(2): 583-594, Jun. 2013. ilus, graf, tab
Artículo en Español | LILACS | ID: lil-675446

RESUMEN

Seedling establishment is one of the most risky stages of plants, especially in arid and semiarid regions, where low water availability and high solar radiation influence its emergence, development and survival. In seasonally dry xerophytic forests occurring in North-Western Córdoba, central Argentina, five neotropical species of Acacia co-exist: A. aroma, A. caven, A. atramentaria, A. gilliesii and A. praecox. With the aim to evaluate growth variables and survival of these five species seedlings, in response to water stress and different light availability conditions, a greenhouse experiment was undertaken from March to June of 2010. Although small differences were found between species (F=5.66, p=0.001), all of them showed high percentages of seedling survival in response to different light and water treatments, suggesting that seedlings would be tolerant to water stress and could be established both in light and shade. On the other hand, although all species showed an increase in growth in light conditions and without water stress, we have found some trends towards a greater growth in the seedlings of A. aroma, A. caven and A. atramentaria when compared to those of A. praecox and A. gilliessi in most of the variables considered (F=41.9, p<0.0001; F=7.06, p<0.0001; F=53.59, p<0.0001). This pattern was confirmed through a cluster analysis that classified the species in two main groups. These results, together with others already reported, would indicate a regenerative niche differentiation that might be favoring the regional coexistence of these five species in semiarid forests in central Argentina.


El establecimiento de la plántula es una de las etapas más riesgosas para las plantas, especialmente en zonas áridas y semiáridas donde la sequía y alta radiación solar influyen sobre su emergencia, desarrollo y supervivencia. Se evaluó en invernadero la supervivencia y variables de crecimiento en plántulas sometidas a estrés hídrico y a distintas condiciones de luz, en cinco especies de Acacia (A. aroma, A. caven, A. atramentaria, A. gilliesii y A. praecox) que coexisten en los bosques xerófilos de Córdoba, Argentina. Aunque se encontraron diferencias entre las especies (F=5.66, p=0.001), todas tuvieron altos porcentajes de supervivencia en las distintas condiciones de luz y agua, sugiriendo que serían tolerantes al estrés hídrico y podrían establecerse bajo luz o sombra. Si bien todas las especies mejoraron el crecimiento con luz y sin estrés hídrico, A. aroma, A. caven y A. atramentaria mostraron una tendencia hacia un mayor crecimiento en la mayoría de las variables consideradas (F=41.9, p<0.0001; F=7.06, p<0.0001; F=53.59, p<0.0001). Estos resultados sumados a otros ya reportados indicarían una diferenciación de nichos regenerativos favoreciendo la coexistencia regional de estas especies en los bosques xerófilos de Córdoba.


Asunto(s)
Acacia/crecimiento & desarrollo , Luz , Plantones/crecimiento & desarrollo , Árboles , Agua , Argentina , Acacia/clasificación , Clima Tropical
10.
Environ Manage ; 42(2): 181-9, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18427886

RESUMEN

Synergistic combinations of climatic and land use changes have the potential to produce the most dramatic impacts on land cover. Although this is widely accepted, empirical examples, particularly involving deforestation in Latin America, are still very few. The geographic extent and causes of deforestation in subtropical seasonally dry forests of the world have received very little attention. This is especially true for the Chaco forests in South America, which are being lost at an alarming rate, sometimes higher than those reported for tropical forests. On this basis, the aims of this study were to analyze the changes in land cover that have occurred during the last three decades of the 20th century in the Chaco forests of central Argentina, and to explain the factors that have driven those changes. Results show major land cover changes. Approximately 80% of the area that was originally undisturbed forest is now occupied by crops, pastures, and secondary scrub. The main proximate cause of deforestation has been agricultural expansion, soybean cultivation in particular. This appears as the result of the synergistic convergence of climatic, technological, and socioeconomic factors, supporting the hypothesis of a multiple-factor explanation for forest loss, while providing one of the very few existing analyses of changes in subtropical forests of the world.


Asunto(s)
Agricultura , Clima , Ecosistema , Factores Socioeconómicos , Argentina , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Agricultura Forestal , Vivienda , Actividades Humanas , Humanos , Densidad de Población , Factores de Tiempo , Árboles
11.
Mem. Inst. Oswaldo Cruz ; 107(2): 231-237, Mar. 2012. mapas
Artículo en Inglés | LILACS | ID: lil-617070

RESUMEN

The association between land use and land cover changes between 1979-2004 in a 2.26-million-hectare area south of the Gran Chaco region and Trypanosoma cruzi infection in rural communities was analysed. The extent of cultural land, open and closed forests and shrubland up to 3,000 m around rural communities in the north, northwest and west of the province of Córdoba was estimated using Landsat satellite imagery. The T. cruzi prevalence was estimated with a cross-sectional serological survey conducted in the rural communities. The land cover showed the same patterns in the 1979, 1999 and 2004 satellite imagery in both the northwest and west regions, with shrinking regions of cultured land and expanding closed forests away from the community. The closed forests and agricultural land coverage in the north region showed the same trend as in the northwest and west regions in 1979 but not in 1999 or 2004. In the latter two years, the coverage remote from the communities was either constant or changed in opposite ways from that of the northwest and west regions. The changes in closed forests and cultured vegetation alone did not have a significant, direct relationship with the occurrence of rural communities with at least one person infected by T. cruzi. This study suggests that the overall decrease in the prevalence of T. cruzi is a consequence of a combined effect of vector control activities and changes in land use and land cover.


Asunto(s)
Adolescente , Adulto , Animales , Niño , Humanos , Anticuerpos Antiprotozoarios/sangre , Enfermedad de Chagas/epidemiología , Insectos Vectores , Triatoma , Trypanosoma cruzi/inmunología , Agricultura , Argentina/epidemiología , Estudios Transversales , Enfermedad de Chagas/transmisión , Prevalencia , Población Rural , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA