Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Breast Cancer Res ; 26(1): 87, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816770

RESUMEN

BACKGROUND: Despite progress understanding the mechanisms underlying tumor spread, metastasis remains a clinical challenge. We identified the choline-producing glycerophosphodiesterase, EDI3 and reported its association with metastasis-free survival in endometrial cancer. We also observed that silencing EDI3 slowed cell migration and other cancer-relevant phenotypes in vitro. Recent work demonstrated high EDI3 expression in ER-HER2+ breast cancer compared to the other molecular subtypes. Silencing EDI3 in ER-HER2+ cells significantly reduced cell survival in vitro and decreased tumor growth in vivo. However, a role for EDI3 in tumor metastasis in this breast cancer subtype was not explored. Therefore, in the present work we investigate whether silencing EDI3 in ER-HER2+ breast cancer cell lines alters phenotypes linked to metastasis in vitro, and metastasis formation in vivo using mouse models of experimental metastasis. METHODS: To inducibly silence EDI3, luciferase-expressing HCC1954 cells were transduced with lentiviral particles containing shRNA oligos targeting EDI3 under the control of doxycycline. The effect on cell migration, adhesion, colony formation and anoikis was determined in vitro, and significant findings were confirmed in a second ER-HER2+ cell line, SUM190PT. Doxycycline-induced HCC1954-luc shEDI3 cells were injected into the tail vein or peritoneum of immunodeficient mice to generate lung and peritoneal metastases, respectively and monitored using non-invasive bioluminescence imaging. Metabolite levels in cells and tumor tissue were analyzed using targeted mass spectrometry and MALDI mass spectrometry imaging (MALDI-MSI), respectively. RESULTS: Inducibly silencing EDI3 reduced cell adhesion and colony formation, as well as increased susceptibility to anoikis in HCC1954-luc cells, which was confirmed in SUM190PT cells. No influence on cell migration was observed. Reduced luminescence was seen in lungs and peritoneum of mice injected with cells expressing less EDI3 after tail vein and intraperitoneal injection, respectively, indicative of reduced metastasis. Importantly, mice injected with EDI3-silenced cells survived longer. Closer analysis of the peritoneal organs revealed that silencing EDI3 had no effect on metastatic organotropism but instead reduced metastatic burden. Finally, metabolic analyses revealed significant changes in choline and glycerophospholipid metabolites in cells and in pancreatic metastases in vivo. CONCLUSIONS: Reduced metastasis upon silencing supports EDI3's potential as a treatment target in metastasizing ER-HER2+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Fosfolipasas , Receptor ErbB-2 , Receptores de Estrógenos , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Receptores de Estrógenos/metabolismo , Carga Tumoral , Fosfolipasas/genética , Fosfolipasas/metabolismo
2.
J Hepatol ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977136

RESUMEN

BACKGROUND & AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic liver disease. Owing to limited available treatment options, novel pre-clinical models for target selection and drug validation are warranted. We have established and extensively characterized a primary human steatotic hepatocyte in vitro model system that could guide the development of treatment strategies for MASLD. METHODS: Cryopreserved primary human hepatocytes from five donors varying in sex and ethnicity were cultured with free fatty acids in a 3D collagen sandwich for 7 days and the development of MASLD was followed by assessing classical hepatocellular functions. As proof of concept, the effects of the drug firsocostat (GS-0976) on in vitro MASLD phenotypes were evaluated. RESULTS: Incubation with free fatty acids induced steatosis, insulin resistance, mitochondrial dysfunction, inflammation, and alterations in prominent human gene signatures similar to patients with MASLD, indicating the recapitulation of human MASLD in this system. The application of firsocostat rescued clinically observed fatty liver disease pathologies, highlighting the ability of the in vitro system to test the efficacy and potentially characterize the mode of action of drug candidates. CONCLUSIONS: Altogether, our human MASLD in vitro model system could guide the development and validation of novel targets and drugs for the treatment of MASLD. IMPACT AND IMPLICATIONS: Due to low drug efficacy and high toxicity, clinical treatment options for metabolic dysfunction-associated steatotic liver disease (MASLD) are currently limited. To facilitate earlier stop-go decisions in drug development, we have established a primary human steatotic hepatocyte in vitro model. As the model recapitulates clinically relevant MASLD characteristics at high phenotypic resolution, it can serve as a pre-screening platform and guide target identification and validation in MASLD therapy.

3.
J Hepatol ; 80(2): 268-281, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37939855

RESUMEN

BACKGROUND & AIMS: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS: Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.


Asunto(s)
Proteínas Portadoras , Colestasis , Enfermedades Renales , Hepatopatías , Glicoproteínas de Membrana , Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Humanos , Ratones , Animales , Colestasis/complicaciones , Colestasis/metabolismo , Riñón/metabolismo , Simportadores/metabolismo , Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Conductos Biliares/metabolismo , Hepatopatías/metabolismo , Sodio
4.
Arch Toxicol ; 97(11): 3005-3017, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37615677

RESUMEN

Exposure to multiple substances is a challenge for risk evaluation. Currently, there is an ongoing debate if generic "mixture assessment/allocation factors" (MAF) should be introduced to increase public health protection. Here, we explore concepts of mixture toxicity and the potential influence of mixture regulation concepts for human health protection. Based on this analysis, we provide recommendations for research and risk assessment. One of the concepts of mixture toxicity is additivity. Substances may act additively by affecting the same molecular mechanism within a common target cell, for example, dioxin-like substances. In a second concept, an "enhancer substance" may act by increasing the target site concentration and aggravating the adverse effect of a "driver substance". For both concepts, adequate risk management of individual substances can reliably prevent adverse effects to humans. Furthermore, we discuss the hypothesis that the large number of substances to which humans are exposed at very low and individually safe doses may interact to cause adverse effects. This commentary identifies knowledge gaps, such as the lack of a comprehensive overview of substances regulated under different silos, including food, environmentally and occupationally relevant substances, the absence of reliable human exposure data and the missing accessibility of ratios of current human exposure to threshold values, which are considered safe for individual substances. Moreover, a comprehensive overview of the molecular mechanisms and most susceptible target cells is required. We conclude that, currently, there is no scientific evidence supporting the need for a generic MAF. Rather, we recommend taking more specific measures, which focus on compounds with relatively small ratios between human exposure and doses, at which adverse effects can be expected.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Dibenzodioxinas Policloradas , Humanos , Alimentos , Salud Pública , Medición de Riesgo
5.
BMC Nurs ; 22(1): 15, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639785

RESUMEN

BACKGROUND: Animal models are increasingly used in Nursing science to study care approaches. Despite the scientific relevance and the ethical debate surrounding the use of experimental animals, there is a scarcity of scholarly literature exploring this topic in Nursing Schools. AIM: To evaluate perceptions and attitudes of nursing students enrolled in a Pharmacology course on the use of experimental animals and implementation of alternative methods, by comparing the experience for two academic years. An interdisciplinary collaboration has also been developed. METHODS: A descriptive cross-sectional, quantitative study was developed. Undergraduate nursing students were enrolled in the Pharmacology subject at the University of Leon (Spain). The study was carried out in the Pharmacology facilities. Students followed a two-session practical class regarding experimental animals and alternative methods in the Pharmacology course (Degree in Nursing) in two different academic years (2019-20/2020-21). At the end of the activity, they answered a questionnaire to assess their opinions on the use of experimental animals and alternative methods in Pharmacology and the 3Rs principle. RESULTS: A comparison of the students' perception with and without direct participation in the evaluation of promazine effects in mice was made. A total of 190 students participated in the teaching experience, providing high scores in all items (4-5 out of 5 points) regarding the teaching experience. Students became also aware of the advantages and disadvantages on the use of experimental animals, as well as the ethical considerations to bear in mind for their use and the need for alternative methods. CONCLUSIONS: In the students' opinion, the total replacement of animals by alternative techniques was very difficult, and they preferred to do the practice face-to-face. The alternative method designed was useful for the students to accept the employment of experimental animals in biomedical research and education, and know the legislation applied in the protection of animals.

6.
J Hepatol ; 77(5): 1386-1398, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35863491

RESUMEN

BACKGROUND & AIMS: Pluripotent stem cell (PSC)-derived hepatocyte-like cells (HLC) have enormous potential as a replacement for primary hepatocytes in drug screening, toxicology and cell replacement therapy, but their genome-wide expression patterns differ strongly from primary human hepatocytes (PHH). METHODS: We differentiated human induced pluripotent stem cells (hiPSC) via definitive endoderm to HLC and characterized the cells by single-cell and bulk RNA-seq, with complementary epigenetic analyses. We then compared HLC to PHH and publicly available data on human fetal hepatocytes (FH) ex vivo; we performed bioinformatics-guided interventions to improve HLC differentiation via lentiviral transduction of the nuclear receptor FXR and agonist exposure. RESULTS: Single-cell RNA-seq revealed that transcriptomes of individual HLC display a hybrid state, where hepatocyte-associated genes are expressed in concert with genes that are not expressed in PHH - mostly intestinal genes - within the same cell. Bulk-level overrepresentation analysis, as well as regulon analysis at the single-cell level, identified sets of regulatory factors discriminating HLC, FH, and PHH, hinting at a central role for the nuclear receptor FXR in the functional maturation of HLC. Combined FXR expression plus agonist exposure enhanced the expression of hepatocyte-associated genes and increased the ability of bile canalicular secretion as well as lipid droplet formation, thereby increasing HLCs' similarity to PHH. The undesired non-liver gene expression was reproducibly decreased, although only by a moderate degree. CONCLUSION: In contrast to physiological hepatocyte precursor cells and mature hepatocytes, HLC co-express liver and hybrid genes in the same cell. Targeted modification of the FXR gene regulatory network improves their differentiation by suppressing intestinal traits whilst inducing hepatocyte features. LAY SUMMARY: Generation of human hepatocytes from stem cells represents an active research field but its success is hampered by the fact that the stem cell-derived 'hepatocytes' still show major differences to hepatocytes obtained from a liver. Here, we identified an important reason for the difference, specifically that the stem cell-derived 'hepatocyte' represents a hybrid cell with features of hepatocytes and intestinal cells. We show that a specific protein (FXR) suppresses intestinal and induces liver features, thus bringing the stem cell-derived cells closer to hepatocytes derived from human livers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular , Hepatocitos/metabolismo , Humanos , Intestinos
7.
Arch Toxicol ; 96(11): 2967-2981, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35962801

RESUMEN

Hypoalbuminemia (HA) is frequently observed in systemic inflammatory diseases and in liver disease. However, the influence of HA on the pharmacokinetics and toxicity of compounds with high plasma albumin binding remained insufficiently studied. The 'lack-of-delivery-concept' postulates that HA leads to less carrier mediated uptake of albumin bound substances into hepatocytes and to less glomerular filtration; in contrast, the 'concept-of-higher-free-fraction' argues that increased concentrations of non-albumin bound compounds facilitate hepatocellular uptake and enhance glomerular filtration. To address this question, we performed intravital imaging on livers and kidneys of anesthetized mice to quantify the spatio-temporal tissue distribution of the mycotoxin ochratoxin A (OTA) based on its auto-fluorescence in albumin knockout and wild-type mice. HA strongly enhanced the uptake of OTA from the sinusoidal blood into hepatocytes, followed by faster secretion into bile canaliculi. These toxicokinetic changes were associated with increased hepatotoxicity in heterozygous albumin knockout mice for which serum albumin was reduced to a similar extent as in patients with severe hypoalbuminemia. HA also led to a shorter half-life of OTA in renal capillaries, increased glomerular filtration, and to enhanced uptake of OTA into tubular epithelial cells. In conclusion, the results favor the 'concept-of-higher-free-fraction' in HA; accordingly, HA causes an increased tissue uptake of compounds with high albumin binding and increased organ toxicity. It should be studied if this concept can be generalized to all compounds with high plasma albumin binding that are substrates of hepatocyte and renal tubular epithelial cell carriers.


Asunto(s)
Hipoalbuminemia , Micotoxinas , Ocratoxinas , Animales , Hipoalbuminemia/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Ratones , Micotoxinas/metabolismo , Ocratoxinas/química , Albúmina Sérica/metabolismo , Distribución Tisular
8.
Arch Toxicol ; 94(1): 205-217, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31919559

RESUMEN

Inflammation has been recognized as essential for restorative regeneration. Here, we analyzed the sequential processes during onset of liver injury and subsequent regeneration based on time-resolved transcriptional regulatory networks (TRNs) to understand the relationship between inflammation, mature organ function, and regeneration. Genome-wide expression and TRN analysis were performed time dependently in mouse liver after acute injury by CCl4 (2 h, 8 h, 1, 2, 4, 6, 8, 16 days), as well as lipopolysaccharide (LPS, 24 h) and compared to publicly available data after tunicamycin exposure (mouse, 6 h), hepatocellular carcinoma (HCC, mouse), and human chronic liver disease (non-alcoholic fatty liver, HBV infection and HCC). Spatiotemporal investigation differentiated lobular zones for signaling and transcription factor expression. Acute CCl4 intoxication induced expression of gene clusters enriched for inflammation and stress signaling that peaked between 2 and 24 h, accompanied by a decrease of mature liver functions, particularly metabolic genes. Metabolism decreased not only in pericentral hepatocytes that underwent CCl4-induced necrosis, but extended to the surviving periportal hepatocytes. Proliferation and tissue restorative TRNs occurred only later reaching a maximum at 48 h. The same upstream regulators (e.g. inhibited RXR function) were implicated in increased inflammation and suppressed metabolism. The concomitant inflammation/metabolism TRN occurred similarly after acute LPS and tunicamycin challenges, in chronic mouse models and also in human liver diseases. Downregulation of metabolic genes occurs concomitantly to induce inflammation-associated genes as an early response and appears to be initiated by similar upstream regulators in acute and chronic liver diseases in humans and mice. In the acute setting, proliferation and restorative regeneration associated TRNs peak only later when metabolism is already suppressed.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/genética , Redes Reguladoras de Genes , Hepatitis Crónica/genética , Animales , Tetracloruro de Carbono/toxicidad , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Hepatitis B/genética , Hepatitis B/metabolismo , Hepatitis Crónica/fisiopatología , Humanos , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
9.
Int J Cancer ; 145(4): 901-915, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30653260

RESUMEN

Endothelial lipase (LIPG) is a cell surface associated lipase that displays phospholipase A1 activity towards phosphatidylcholine present in high-density lipoproteins (HDL). LIPG was recently reported to be expressed in breast cancer and to support proliferation, tumourigenicity and metastasis. Here we show that severe oxidative stress leading to AMPK activation triggers LIPG upregulation, resulting in intracellular lipid droplet accumulation in breast cancer cells, which supports survival. Neutralizing oxidative stress abrogated LIPG upregulation and the concomitant lipid storage. In human breast cancer, high LIPG expression was observed in a limited subset of tumours and was significantly associated with shorter metastasis-free survival in node-negative, untreated patients. Moreover, expression of PLIN2 and TXNRD1 in these tumours indicated a link to lipid storage and oxidative stress. Altogether, our findings reveal a previously unrecognized role for LIPG in enabling oxidative stress-induced lipid droplet accumulation in tumour cells that protects against oxidative stress, and thus supports tumour progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Lipasa/metabolismo , Lípidos/fisiología , Estrés Oxidativo/fisiología , Línea Celular Tumoral , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Humanos , Metabolismo de los Lípidos/fisiología , Lipoproteínas HDL/metabolismo , Células MCF-7 , Persona de Mediana Edad , Regulación hacia Arriba/fisiología
10.
Liver Int ; 39(3): 540-556, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30444569

RESUMEN

BACKGROUND AND AIMS: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children and adolescents today. In comparison with adult disease, paediatric NAFLD may show a periportal localization, which is associated with advanced fibrosis. This study aimed to assess the role of genetic risk variants for histological disease pattern and severity in childhood NAFLD. METHODS: We studied 14 single nucleotide polymorphisms (SNP) in a cohort of 70 adolescents with biopsy-proven NAFLD. Genotype was compared to an adult control cohort (n = 200) and analysed in relation to histological disease severity and liver tissue proteomics. RESULTS: Three of the 14 SNPs were significantly associated with paediatric NAFLD after FDR adjustment, rs738409 (PNPLA3, P = 2.80 × 10-06 ), rs1044498 (ENPP1, P = 0.0091) and rs780094 (GCKR, P = 0.0281). The severity of steatosis was critically associated with rs738409 (OR=3.25; 95% CI: 1.72-6.52, FDR-adjusted P = 0.0070). The strongest variants associated with severity of fibrosis were rs1260326, rs780094 (both GCKR) and rs659366 (UCP2). PNPLA3 was associated with a portal pattern of steatosis, inflammation and fibrosis. Proteome profiling revealed decreasing levels of GCKR protein with increasing carriage of the rs1260326/rs780094 minor alleles and downregulation of the retinol pathway in rs738409 G/G carriers. Computational metabolic modelling highlighted functional relevance of PNPLA3, GCKR and UCP2 for NAFLD development. CONCLUSIONS: This study provides evidence for the role of PNPLA3 as a determinant of portal NAFLD localization and severity of portal fibrosis in children and adolescents, the risk variant being associated with an impaired hepatic retinol metabolism.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Lipasa/genética , Cirrosis Hepática/genética , Proteínas de la Membrana/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Polimorfismo de Nucleótido Simple , Proteína Desacopladora 1/genética , Adolescente , Factores de Edad , Estudios de Casos y Controles , Niño , Progresión de la Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Humanos , Hígado/enzimología , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/enzimología , Masculino , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/enzimología , Fenotipo , Medición de Riesgo , Factores de Riesgo , Índice de Severidad de la Enfermedad , Factores de Tiempo , Vitamina A/metabolismo
11.
Arch Toxicol ; 93(6): 1609-1637, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31250071

RESUMEN

Drug-induced liver injury (DILI) cannot be accurately predicted by animal models. In addition, currently available in vitro methods do not allow for the estimation of hepatotoxic doses or the determination of an acceptable daily intake (ADI). To overcome this limitation, an in vitro/in silico method was established that predicts the risk of human DILI in relation to oral doses and blood concentrations. This method can be used to estimate DILI risk if the maximal blood concentration (Cmax) of the test compound is known. Moreover, an ADI can be estimated even for compounds without information on blood concentrations. To systematically optimize the in vitro system, two novel test performance metrics were introduced, the toxicity separation index (TSI) which quantifies how well a test differentiates between hepatotoxic and non-hepatotoxic compounds, and the toxicity estimation index (TEI) which measures how well hepatotoxic blood concentrations in vivo can be estimated. In vitro test performance was optimized for a training set of 28 compounds, based on TSI and TEI, demonstrating that (1) concentrations where cytotoxicity first becomes evident in vitro (EC10) yielded better metrics than higher toxicity thresholds (EC50); (2) compound incubation for 48 h was better than 24 h, with no further improvement of TSI after 7 days incubation; (3) metrics were moderately improved by adding gene expression to the test battery; (4) evaluation of pharmacokinetic parameters demonstrated that total blood compound concentrations and the 95%-population-based percentile of Cmax were best suited to estimate human toxicity. With a support vector machine-based classifier, using EC10 and Cmax as variables, the cross-validated sensitivity, specificity and accuracy for hepatotoxicity prediction were 100, 88 and 93%, respectively. Concentrations in the culture medium allowed extrapolation to blood concentrations in vivo that are associated with a specific probability of hepatotoxicity and the corresponding oral doses were obtained by reverse modeling. Application of this in vitro/in silico method to the rat hepatotoxicant pulegone resulted in an ADI that was similar to values previously established based on animal experiments. In conclusion, the proposed method links oral doses and blood concentrations of test compounds to the probability of hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Administración Oral , Algoritmos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Técnicas In Vitro , Dosis Máxima Tolerada , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/sangre , Farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Máquina de Vectores de Soporte
12.
Nucleic Acids Res ; 45(1): 54-66, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-27899623

RESUMEN

The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively.


Asunto(s)
Cromatina/metabolismo , ADN/genética , Regulación de la Expresión Génica , Histonas/genética , Aprendizaje Automático , Factores de Transcripción/genética , Algoritmos , Sitios de Unión , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Línea Celular , Línea Celular Tumoral , Cromatina/química , Ensamble y Desensamble de Cromatina , ADN/metabolismo , Células Hep G2 , Hepatocitos/citología , Hepatocitos/metabolismo , Histonas/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células K562 , Especificidad de Órganos , Cultivo Primario de Células , Análisis de Componente Principal , Unión Proteica , Factores de Transcripción/metabolismo
13.
NMR Biomed ; 31(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29206323

RESUMEN

High-resolution magic angle spinning (HR MAS) nuclear magnetic resonance (NMR) spectroscopy is increasingly being used to study metabolite levels in human breast cancer tissue, assessing, for instance, correlations with prognostic factors, survival outcome or therapeutic response. However, the impact of intratumoral heterogeneity on metabolite levels in breast tumor tissue has not been studied comprehensively. More specifically, when biopsy material is analyzed, it remains questionable whether one biopsy is representative of the entire tumor. Therefore, multi-core sampling (n = 6) of tumor tissue from three patients with breast cancer, followed by lipid (0.9- and 1.3-ppm signals) and metabolite quantification using HR MAS 1 H NMR, was performed, resulting in the quantification of 32 metabolites. The mean relative standard deviation across all metabolites for the six tumor cores sampled from each of the three tumors ranged from 0.48 to 0.74. This was considerably higher when compared with a morphologically more homogeneous tissue type, here represented by murine liver (0.16-0.20). Despite the seemingly high variability observed within the tumor tissue, a random forest classifier trained on the original sample set (training set) was, with one exception, able to correctly predict the tumor identity of an independent series of cores (test set) that were additionally sampled from the same three tumors and analyzed blindly. Moreover, significant differences between the tumors were identified using one-way analysis of variance (ANOVA), indicating that the intertumoral differences for many metabolites were larger than the intratumoral differences for these three tumors. That intertumoral differences, on average, were larger than intratumoral differences was further supported by the analysis of duplicate tissue cores from 15 additional breast tumors. In summary, despite the observed intratumoral variability, the results of the present study suggest that the analysis of one, or a few, replicates per tumor may be acceptable, and supports the feasibility of performing reliable analyses of patient tissue.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Metabolómica , Espectroscopía de Protones por Resonancia Magnética/métodos , Análisis de Varianza , Neoplasias de la Mama/patología , Femenino , Humanos , Lípidos/química , Metaboloma , Análisis de Componente Principal
14.
J Immunol ; 197(8): 3406-3414, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27591321

RESUMEN

E- and P-selectin ligands (E- and P-ligs) guide effector memory T cells into skin and inflamed regions, mediate the inflammatory recruitment of leukocytes, and contribute to the localization of hematopoietic precursor cells. A better understanding of their molecular regulation is therefore of significant interest with regard to therapeutic approaches targeting these pathways. In this study, we examined the transcriptional regulation of fucosyltransferase 7 (FUT7), an enzyme crucial for generation of the glycosylated E- and P-ligs. We found that high expression of the coding gene fut7 in murine CD4+ T cells correlates with DNA demethylation within a minimal promoter in skin/inflammation-seeking effector memory T cells. Retinoic acid, a known inducer of the gut-homing phenotype, abrogated the activation-induced demethylation of this region, which contains a cAMP responsive element. Methylation of the promoter or mutation of the cAMP responsive element abolished promoter activity and the binding of CREB, confirming the importance of this region and of its demethylation for fut7 transcription in T cells. Furthermore, studies on human CD4+ effector memory T cells confirmed demethylation within FUT7 corresponding to high FUT7 expression. Monocytes showed an even more extensive demethylation of the FUT7 gene whereas hepatocytes, which lack selectin ligand expression, exhibited extensive methylation. In conclusion, we show that DNA demethylation within the fut7 gene controls selectin ligand expression in mice and humans, including the inducible topographic commitment of T cells for skin and inflamed sites.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Metilación de ADN , Fucosiltransferasas/metabolismo , Inflamación/metabolismo , Piel/metabolismo , Animales , Células Cultivadas , Metilación de ADN/genética , Fucosiltransferasas/genética , Humanos , Ratones , Ratones Endogámicos BALB C , ARN Mensajero/genética , ARN Mensajero/metabolismo
15.
Arch Toxicol ; 92(12): 3505-3515, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30317417

RESUMEN

Primary human hepatocytes (PHHs) remain the gold standard for in vitro testing in the field of pharmacology and toxicology. One crucial parameter influencing the results of in vitro tests is the incubation period with test compounds. It has been suggested that longer incubation periods may be critical for the prediction of repeated dose toxicity. However, a study that systematically analyzes the relationship between incubation period and cytotoxicity in PHHs is not available. To close this gap, 30 compounds were tested in a concentration-dependent manner for cytotoxicity in cultivated cryopreserved PHHs (three donors per compound) for 1, 2 and 7 days. The median of the EC50 values of all compounds decreased 1.78-fold on day 2 compared to day 1, and 1.89-fold on day 7 compared to day 1. Median values of EC50 ratios of all compounds at day 2 and day 7 were close to one but for individual compounds the ratio increased up to almost six. Strong correlations were obtained for EC50 on day 1 and day 7 (R = 0.985; 95% CI 0.960-0.994), day 1 and day 2 (R = 0.964; 95% CI 0.910-0.986), as well as day 2 and day 7 (R = 0.981; 95% CI 0.955-0.992). However, compound specific differences also occurred. Whereas, for example, busulfan showed a relatively strong increase on day 7 compared to day 1, cytotoxicity of acetaminophen did not increase during longer incubation periods. To validate the observed correlations, a publicly available data set, containing data on the cytotoxicity of human hepatocytes cultivated as spheroids for incubation periods of 5 and 14 days, was analyzed. A high correlation coefficient of EC50 values at day 5 and day 14 was obtained (R = 0.894; 95% CI 0.798-0.945). In conclusion, the median cytotoxicity of the test compounds increased between 1 and 2 days of incubation, with no or only a minimal further increase until day 7. It remains to be studied whether the different results obtained for some individual compounds after longer exposure periods would correspond better to human-repeated dose toxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Hepatocitos/efectos de los fármacos , Pruebas de Toxicidad/métodos , Acetaminofén/toxicidad , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Criopreservación , Relación Dosis-Respuesta a Droga , Humanos , Factores de Tiempo
16.
Arch Toxicol ; 92(12): 3517-3533, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30511339

RESUMEN

Transcriptomics is developing into an invaluable tool in toxicology. The aim of this study was, using a transcriptomics approach, to identify genes that respond similar to many different chemicals (including drugs and industrial compounds) in both rat liver in vivo and in cultivated hepatocytes. For this purpose, we analyzed Affymetrix microarray expression data from 162 compounds that were previously tested in a concentration-dependent manner in rat livers in vivo and in rat hepatocytes cultivated in sandwich culture. These data were obtained from the Japanese Toxicogenomics Project (TGP) and North Rhine-Westphalian (NRW) data sets, which represent 138 and 29 compounds, respectively, and have only 5 compounds in common between them. The in vitro gene expression data from the NRW data set were generated in the present study, while TGP is publicly available. For each of the data sets, the overlap between up- or down-regulated genes in vitro and in vivo was identified, and named in vitro-in vivo consensus genes. Interestingly, the in vivo-in vitro consensus genes overlapped to a remarkable extent between both data sets, and were 21-times (upregulated genes) or 12-times (down-regulated genes) enriched compared to random expectation. Finally, the genes in the TGP and NRW overlap were used to identify the upregulated genes with the highest compound coverage, resulting in a seven-gene set of Cyp1a1, Ugt2b1, Cdkn1a, Mdm2, Aldh1a1, Cyp4a3, and Ehhadh. This seven-gene set was then successfully tested with structural analogues of valproic acid that are not present in the TGP and NRW data sets. In conclusion, the seven-gene set identified in the present study responds similarly in vitro and in vivo to a wide range of different chemicals. Despite these promising results with the seven-gene set, transcriptomics with cultivated rat hepatocytes remains a challenge, because in general many genes are up- or downregulated by in vitro culture per se, respond differently to test compounds in vitro and in vivo, and/or show higher variability in the in vitro system compared to the corresponding in vivo data.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hepatocitos/efectos de los fármacos , Pruebas de Toxicidad/métodos , Toxicogenética/métodos , Animales , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/genética , Expresión Génica , Perfilación de la Expresión Génica/métodos , Hígado/efectos de los fármacos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Ratas , Ratas Wistar , Regulación hacia Arriba/genética
17.
Anal Bioanal Chem ; 409(6): 1591-1606, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27896396

RESUMEN

Metabolic perturbations resulting from excessive hepatic fat accumulation are poorly understood. Thus, in this study, leptin-deficient ob/ob mice, a mouse model of fatty liver disease, were used to investigate metabolic alterations in more detail. Metabolites were quantified in intact liver tissues of ob/ob (n = 8) and control (n = 8) mice using high-resolution magic angle spinning (HR-MAS) 1H-NMR. In addition, after demonstrating that HR-MAS 1H-NMR does not affect RNA integrity, transcriptional changes were measured by quantitative real-time PCR on RNA extracted from the same specimens after HR-MAS 1H-NMR measurements. Importantly, the gene expression changes obtained agreed with those observed by Affymetrix microarray analysis performed on RNA isolated directly from fresh-frozen tissue. In total, 40 metabolites could be assigned in the spectra and subsequently quantified. Quantification of lactate was also possible after applying a lactate-editing pulse sequence that suppresses the lipid signal, which superimposes the lactate methyl resonance at 1.3 ppm. Significant differences were detected for creatinine, glutamate, glycine, glycolate, trimethylamine-N-oxide, dimethylglycine, ADP, AMP, betaine, phenylalanine, and uridine. Furthermore, alterations in one-carbon metabolism, supported by both metabolic and transcriptional changes, were observed. These included reduced demethylation of betaine to dimethylglycine and the reduced expression of genes coding for transsulfuration pathway enzymes, which appears to preserve methionine levels, but may limit glutathione synthesis. Overall, the combined approach is advantageous as it identifies changes not only at the single gene or metabolite level but also deregulated pathways, thus providing critical insight into changes accompanying fatty liver disease. Graphical abstract A Evaluation of RNA integrity before and after HR-MAS 1H-NMR of intact mouse liver tissue. B Metabolite concentrations and gene expression levels assessed in ob/ob (steatotic) and ob/+ (control) mice using HR-MAS 1H-NMR and qRT-PCR, respectively.


Asunto(s)
Betaína/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Metaboloma , Espectroscopía de Protones por Resonancia Magnética/métodos , Transcriptoma , Animales , Eliminación de Gen , Ácido Láctico/metabolismo , Leptina/genética , Leptina/metabolismo , Hígado/metabolismo , Masculino , Redes y Vías Metabólicas , Metabolómica/métodos , Ratones
18.
J Sep Sci ; 40(22): 4303-4310, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28877409

RESUMEN

Cofactors such as coenzyme A and its derivatives acetyl-coenzyme A and malonyl-coenzyme A are involved in many metabolic pathways. Due to trace level concentrations in biological samples and the high reactivity of cofactors, a fast, sensitive, and selective method for quantification is mandatory. In this study, online solid-phase extraction was coupled successfully to hydrophilic interaction liquid chromatography with tandem mass spectrometry for isolation of analytes in complex matrix and quantification by external calibration. Online solid-phase extraction was carried out by application of a weak anion-exchange column, whereas hydrophilic interaction liquid chromatography separation was performed on an amide modified stationary phase. Sample preparation of the extracts before the analysis was reduced to a centrifugation and dilution step. Moreover, the applied online solid-phase extraction significantly reduced matrix effects and increased the signal-to-noise ratio. The limit of detection and the limit of quantification were in the lower nanomolar range. Finally, the applicability of this method was demonstrated on MCF-7 breast cancer cell cultures, a commonly used model system, where acetyl-coenzyme A and malonyl-coenzyme A were determined using standard addition procedure in concentrations of 1.98 µM and 41 nM, respectively.


Asunto(s)
Neoplasias de la Mama/enzimología , Cromatografía Liquida , Malonil Coenzima A/análisis , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Células MCF-7
19.
Arch Toxicol ; 91(11): 3477-3505, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29051992

RESUMEN

Adverse outcome pathways (AOPs) are a recent toxicological construct that connects, in a formalized, transparent and quality-controlled way, mechanistic information to apical endpoints for regulatory purposes. AOP links a molecular initiating event (MIE) to the adverse outcome (AO) via key events (KE), in a way specified by key event relationships (KER). Although this approach to formalize mechanistic toxicological information only started in 2010, over 200 AOPs have already been established. At this stage, new requirements arise, such as the need for harmonization and re-assessment, for continuous updating, as well as for alerting about pitfalls, misuses and limits of applicability. In this review, the history of the AOP concept and its most prominent strengths are discussed, including the advantages of a formalized approach, the systematic collection of weight of evidence, the linkage of mechanisms to apical end points, the examination of the plausibility of epidemiological data, the identification of critical knowledge gaps and the design of mechanistic test methods. To prepare the ground for a broadened and appropriate use of AOPs, some widespread misconceptions are explained. Moreover, potential weaknesses and shortcomings of the current AOP rule set are addressed (1) to facilitate the discussion on its further evolution and (2) to better define appropriate vs. less suitable application areas. Exemplary toxicological studies are presented to discuss the linearity assumptions of AOP, the management of event modifiers and compensatory mechanisms, and whether a separation of toxicodynamics from toxicokinetics including metabolism is possible in the framework of pathway plasticity. Suggestions on how to compromise between different needs of AOP stakeholders have been added. A clear definition of open questions and limitations is provided to encourage further progress in the field.


Asunto(s)
Rutas de Resultados Adversos , Ecotoxicología/métodos , Animales , Ecotoxicología/historia , Historia del Siglo XXI , Humanos , Ratones Endogámicos C57BL , Control de Calidad , Medición de Riesgo/métodos , Biología de Sistemas , Toxicocinética , Compuestos de Vinilo/efectos adversos
20.
Circ Res ; 114(8): 1346-60, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24723659

RESUMEN

Recently, growing attention has been directed toward stem cell metabolism, with the key observation that the plasticity of stem cells also reflects the plasticity of their energy substrate metabolism. There seems to be a clear link between the self-renewal state of stem cells, in which cells proliferate without differentiation, and the activity of specific metabolic pathways. Differentiation is accompanied by a shift from anaerobic glycolysis to mitochondrial respiration. This metabolic switch of differentiating stem cells is required to cover the energy demands of the different organ-specific cell types. Among other metabolic signatures, amino acid and carbohydrate metabolism is most prominent in undifferentiated embryonic stem cells, whereas the fatty acid metabolic signature is unique in cardiomyocytes derived from embryonic stem cells. Identifying the specific metabolic pathways involved in pluripotency and differentiation is critical for further progress in the field of developmental biology and regenerative medicine. The recently generated knowledge on metabolic key processes may help to generate mature stem cell-derived somatic cells for therapeutic applications without the requirement of genetic manipulation. In the present review, the literature about metabolic features of stem cells and their cardiovascular cell derivatives as well as the specific metabolic gene signatures differentiating between stem and differentiated cells are summarized and discussed.


Asunto(s)
Metabolismo Energético/fisiología , Miocitos Cardíacos/metabolismo , Células Madre/metabolismo , Aminoácidos/metabolismo , Animales , Metabolismo de los Hidratos de Carbono/fisiología , Diferenciación Celular/fisiología , Proliferación Celular , Ácidos Grasos/metabolismo , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA