Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Environ Manage ; 314: 115086, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35483278

RESUMEN

Previous studies anticipated that microorganisms and their metabolites in waste will increase as a consequence of a decreased collection frequency and due to differences in what kind of waste is bagged before collection leading to an increased exposure of workers handling the waste. This study aim was to investigate the microbial contamination present in the waste collection trucks (WCT) and in the support facilities (waste collection station - WCS). It was applied a multi-approach protocol using active (air sampling by impingement and impaction) and passive (surface swabs, electrostatic dust cloths and settled dust) sampling methods. The screening of azole-resistance, the investigation of mycotoxins and the assessment of the elicited biological responses in vitro were also carried out aiming recognizing the possible health effects of waste collection drivers. SARS-CoV-2 detection was also performed. In WCS only air samples had contamination in all the four sampling sites (canteen, operational removal core, operational removal center, and administrative service). Among all the analyzed matrices from the WCT a higher percentage of total bacterial counts and Gram-was detected in swabs (66.93%; 99.36%). In WCS the most common species were Penicillium sp. (43.98%) and Cladosporium sp. (24.68%), while on WCT Aspergillus sp. (4.18%) was also one of the most found. In the azole resistance screening Aspergillus genera was not observed in the azole-supplemented media. SARS-CoV-2 was not detected in any of the environmental samples collected, but Aspergillus section Fumigati was detected in 5 samples. Mycotoxins were not detected in EDC from WCS, while in WCT they were detected in filters (N = 1) and in settled dust samples (N = 16). In conclusion, our study reveals that a comprehensive sampling approach using active and passive sampling (e.g. settled dust sampling for a representative mycotoxin evaluation) and combined analytic methods (i.e., culture-based and molecular) is an important asset in microbial exposure assessments. Concerning the waste collection exposure scenario, the results of this study unveiled a complex exposure, particularly to fungi and their metabolites. Aspergillus section Fumigati highlight the significance of targeting this section in the waste management industry as an indicator of occupational health risk.


Asunto(s)
COVID-19 , Micotoxinas , Exposición Profesional , Aspergillus , Azoles , Polvo/análisis , Monitoreo del Ambiente/métodos , Hongos , Humanos , Micotoxinas/análisis , Portugal , SARS-CoV-2
2.
Environ Res ; 194: 110674, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33440201

RESUMEN

Aspergillus section Fumigati is one of the sections of the Aspergillus genus most often associated with respiratory symptoms. The azole-resistant clinical isolates in this section have been widely described worldwide. More recently, the environmental origin of azole resistance has been correlated with the development of fungal diseases and therapeutic failure. This paper presents a review of several studies performed in Portuguese occupational environments focusing on occupational exposure to this section and give guidance to exposure assessors and industrial hygienists to ensure an accurate exposure assessment. Future studies should tackle the limitations concerning the assessment of occupational exposure to the Fumigati section, in order to allow the implementation of adequate risk management measures. In the light of the results of previous studies, the following approach is proposed to ensure an accurate exposure assessment: a) a combination of active and passive sampling methods appropriate to each occupational environment; b) the use, in parallel, of culture-based methods and molecular tools to overcome the limitations of each method; c) evaluation of the mycobiota azole resistance profile; and d) consider the possible simultaneous presence of mycotoxins produced by this section when assessing workers occupational exposure. In sum, preventing the development of fungal strains resistant to azoles will only be achieved with a holistic approach. An adequate "One Health approach" can contribute positively to concerted actions in different sectors, by reducing the use of fungicides through the introduction of crops and agricultural practices that prevent fungal colonization, and by promoting the rational use of antifungal drugs in human and animal health.


Asunto(s)
Aspergillus , Exposición Profesional , Antifúngicos , Aspergillus fumigatus , Azoles , Proteínas Fúngicas , Humanos , Pruebas de Sensibilidad Microbiana , Portugal
3.
Environ Res ; 197: 111125, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33895113

RESUMEN

Ambulance vehicles are an essential part of emergency clinical services. Bioburden control in ambulances, through cleaning and disinfection, is crucial to minimize hospital-acquired infections, cross contamination and exposure of patients and ambulances' crew. In Portugal, firefighter crews are responsible, besides fire extinction, for first aid and urgent pre-hospital treatment. This study assessed the bioburden in Portuguese firefighters' ambulances with a multi-approach protocol using active and passive sampling methods. Fungal resistance profile and mycotoxins detection in ambulances' ambient, and S. aureus (SA) prevalence and resistance profile in ambulances' ambient and colonization in workers were also investigated. Toxigenic fungi with clinical relevance, namely Aspergillus section Fumigati, were found on ambulance's air in the hazardous dimension range. Interestingly, surface contamination was higher after cleaning in several sampling sites. Prevalence of S. aureus was 3% in environmental samples, of which 2% were methicillin-sensitive (MSSA) and 1% methicillin-resistant (MRSA). About 2.07 fungal species were able to grow in at least one azole, ranging from one (44% samples) to five (6% samples) species in each azole. Mycotoxins were detected in mops and electrostatic dust cloths. Colonization by S. aureus in the firefighter crew was observed with a high associated prevalence, namely 48%, with a 24% prevalence of MSSA (8/33) and 21% of MRSA (7/33). Additional studies are needed to determine the potential risk of infection transmission between different vehicle fleets and under varying conditions of use. This will strengthen the paramedic sector's mission to save lives without putting their own health and safety at risk.


Asunto(s)
Bomberos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Ambulancias , Humanos , Portugal/epidemiología , Staphylococcus aureus
4.
Environ Res ; 189: 109881, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32979993

RESUMEN

In Portugal, mechanical protection gloves (MPG) are of mandatory use and during their use sweat is released and, consequently, the humidity of the material increases leading to conditions favorable to the growth of microorganisms. However, no studies have been conducted in MPG to assess the bioburden. This study intended to determine the bioburden present in MPG and their biological effects, and to discuss the possibility to use MPG as a passive method to assess occupational exposure to microbial contamination. Fungal burden was characterized through molecular tools for fungal toxigenic species, and antifungal resistance and mycotoxins profiles were determined. Cell viability was determined in swine kidney (SK) monolayer and hepatocellular carcinoma (Hep G2) cell lines. All MPG samples presented Gram-negative bacteria. The fungal contamination ranged from 0 CFU.m-2 in both MEA and DG18, to 5.09 × 106 and 2.75 × 106 and the most commonly fungi found was Aspergillus spp. (50.46%). Azole resistant Aspergillus sections were found in azole supplemented media. Aspergillus sections (Circumdati, Flavi, Fumigati and Versicolores) were detected by molecular tools in 66 out of 67 samples. The most reported mycotoxin was mycophenolic acid (89.6%). HepG2 cells appear to be more sensitive to MPG contamination, with high cytotoxicity (IC50 < 0.05 mm2/ml) observed for 18 out of 57 gloves. MPG can be used in passive sampling to assess occupational exposure to bioburden in waste sorting industries and contribute for risk characterization. Some contaminants of MPG had cytotoxic potential and affected the biology of hepatic cells more than renal cells.


Asunto(s)
Micotoxinas , Exposición Profesional , Animales , Aspergillus , Contaminación de Alimentos , Hongos , Micotoxinas/análisis , Portugal , Porcinos
5.
Environ Res ; 191: 110134, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32860779

RESUMEN

The use of Filtering Respiratory Protective Devices (FRPD) is mandatory in Portugal to protect workers from the waste industry of harmful exposures. Deleterious health effects of exposure to bioburden via inhalation and/or ingestion include respiratory symptoms and nephrotoxicity. Between January and February 2019, 118 FRPD samples were collected in one waste sorting industry and characterized regarding microbial contamination and cytotoxicity, defined as cell metabolic activity, through the MTT colorimetric assay (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide). Cytotoxic effect was classified according to percentage of extinction values with respect to the control group, as follows: absent (≥90); low (80%-90%, +); medium (60%-79%, ++); and high (below 60%, +++). For 113 samples the MTT assay revealed a cytotoxic effect in A549 cells, of which 81 presented high cytotoxicity. In SK cells, a cytotoxic effect was observed in 56 samples, of which five displayed a high cytotoxic effect. Several moderate (p < 0.05) to strong (p < 0.01) correlations were found between higher bacterial and fungal counts both in interior layers (fungi and bacteria) and in exhalation valves (fungi) of FRPD samples and reduced cell metabolic activity of SK cells. On the basis of the obtained results for the cytotoxic effect of FRPD samples on two different cells lines, it was determined that A549 cells exhibited a cytotoxic effect for a higher number of FRPD, whereas the SK cells model correlated better with the other assessed parameters, namely, bacterial and fungal counts and conditions of FRPD use. Although the results are not conclusive on the most appropriate cell line to assess FRPD cytotoxicity, they reinforce the importance of in vitro toxicology in exposure assessments to determine the cytotoxicity of mixtures of contaminants, for better risk characterization and selection of appropriate risk management measures.


Asunto(s)
Dispositivos de Protección Respiratoria , Bacterias , Hongos , Humanos , Industrias , Portugal
6.
Environ Res ; 181: 108947, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31767353

RESUMEN

The bioburden in a Hospital building originates not only from patients, visitors and staff, but is also disseminated by several indoor hospital characteristics and outdoor environmental sources. This study intends to assess the exposure to bioburden in one central Hospital with a multi-approach protocol using active and passive sampling methods. The microbial contamination was also characterized through molecular tools for toxigenic species, antifungal resistance and mycotoxins and endotoxins profile. Two cytotoxicity assays (MTT and resazurin) were conducted with two cell lines (Calu-3 and THP-1), and in vitro pro-inflammatory potential was assessed in THP-1 cell line. Out of the 15 sampling locations 33.3% did not comply with Portuguese legislation regarding bacterial contamination, whereas concerning fungal contamination 60% presented I/O > 1. Toxigenic fungal species were observed in 27% of the sampled rooms (4 out of 15) and qPCR analysis successfully amplified DNA from the Aspergillus sections Flavi and Fumigati, although mycotoxins were not detected. Growth of distinct fungal species was observed on Sabouraud dextrose agar with triazole drugs, such as Aspergillus section Versicolores on 1 mg/L VORI. The highest concentrations of endotoxins were found in settled dust samples and ranged from 5.72 to 23.0 EU.mg-1. While a considerable cytotoxic effect (cell viability < 30%) was observed in one HVAC filter sample with Calu-3 cell line, it was not observed with THP-1 cell line. In air samples a medium cytotoxic effect (61-68% cell viability) was observed in 3 out of 15 samples. The cytokine responses produced a more potent average cell response (46.8 ± 12.3 ρg/mL IL-1ß; 90.8 ± 58.5 ρg/mL TNF-α) on passive samples than air samples (25.5 ± 5.2 ρg/mL IL-1ß and of 19.4 ± 5.2 ρg/mL TNF-α). A multi-approach regarding parameters to assess, sampling and analysis methods should be followed to characterize the biorburden in the Hospital indoor environment. This study supports the importance of considering exposure to complex mixtures in indoor environments.


Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior , Exposición a Riesgos Ambientales/estadística & datos numéricos , Micotoxinas , Polvo , Monitoreo del Ambiente , Hongos , Humanos
7.
Environ Res ; 175: 133-141, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31121528

RESUMEN

Exposure to Aspergillus conidia may cause adverse effects on human health; however, no specific recommendations for routine assessments of Aspergillus in the clinical environment have been suggested so far. This study intended to determine the prevalence of Aspergillus in the clinical environment, focusing on ten Primary Health Care Centres (PHCC) through a novel multi-approach sampling protocol. Air and passive sampling, culture-based methods and a probe-based real-time assay for the detection of four clinically relevant Aspergillus sections were performed. Aspergillus spp. was observed in all PHCC, with highest prevalence on floor surface swabs (n=81) (18% on MEA; 6.94% on DG18). Regarding air samples (n=81), highest Aspergillus counts were found in the waiting room (94% MEA; 18% DG18), where Nigri was the most prevalent Aspergillus section. The use of a multi-approach sampling protocol to assess Aspergillus burden in the analysed PHCC has greatly contributed to risk characterization, highlighting the need to implement corrective measures in order to avoid fungal presence in those settings.


Asunto(s)
Aspergillus , Microbiología Ambiental , Monitoreo del Ambiente , Instituciones de Salud , Técnicas Microbiológicas , Monitoreo del Ambiente/métodos , Instituciones de Salud/estadística & datos numéricos , Técnicas Microbiológicas/métodos , Prevalencia , Manejo de Especímenes
8.
Environ Res ; 164: 522-529, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29604580

RESUMEN

Bioburden proliferation in filters from air conditioning systems of taxis represents a possible source of occupational exposure. The aim of this study was to determine the occurrence of fungi and bacteria in filters from the air conditioning system of taxis used for patient transportation and to assess the exposure of drivers to bioburden. Filters from the air conditioning systems of 19 taxis and 28 personal vehicles (used as controls) operating in three Portuguese cities including the capital Lisbon, were collected during the winter season. The occurrence and significance of bioburden detected in the different vehicles are reported and discussed in terms of colony-forming units (CFU) per 1 m2 of filter area and by the identification of the most frequently detected fungal isolates based on morphology. Azole-resistant mycobiota, fungal biomass, and molecular detection of Aspergillus species/strains were also determined. Bacterial growth was more prevalent in taxis (63.2%) than in personal vehicles (26.3%), whereas fungal growth was more prevalent in personal vehicles (53.6%) than in taxis (21.1-31.6%). Seven different azole-resistant species were identified in this study in 42.1% taxi filters. Levels of fungal biomass were above the detection limit in 63% taxi filters and in 75% personal vehicle filters. No toxigenic species were detected by molecular analysis in the assessed filters. The results obtained show that bioburden proliferation occurs widely in filters from the air conditioning systems of taxis, including the proliferation of azole-resistant fungal species, suggesting that filters should be replaced more frequently. The use of culture based-methods and molecular tools combined enabled an improved risk characterization in this setting.


Asunto(s)
Contaminación del Aire Interior , Exposición Profesional , Aire Acondicionado , Microbiología del Aire , Automóviles , Bacterias , Hongos/química , Humanos , Exposición Profesional/efectos adversos
9.
Int J Environ Health Res ; 28(2): 167-177, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29577752

RESUMEN

Fungi are amongst the bioaerosols of most importance, as indicated by the growing interest in this field of research. The aim was to characterize the exposure to fungal burden in podiatry clinics using culture-based and molecular methods. METHODS: Airborne fungi were collected using an impaction air sampler and surface samples were also performed. Fourteen air samples were collected for direct detection of fungal DNA from filamentous fungi and dermatophytes. Overall, 63.6 % of the evening samples and 46 % of the morning samples surpassed the threshold values (150 CFU/m3). Molecular detection, by real time PCR, of the target fungal species/strains (Aspergillus and Stachybotrys species) was negative for all samples collected. Trichophyton rubrum was detected by PCR analysis in one DNA sample collected on day six. Results suggest the use of both culture-based and molecular methodologies are desirable for a complete evaluation of fungal burden in this particular health care setting.


Asunto(s)
Microbiología del Aire , Instituciones de Atención Ambulatoria , Hongos/aislamiento & purificación , Recuento de Colonia Microbiana , ADN de Hongos/análisis , Irlanda , Podiatría , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
J Toxicol Environ Health A ; 80(13-15): 719-728, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28548622

RESUMEN

Studies on the microbiology of coffee cherries and beans have shown that the predominant toxigenic fungal genera (Aspergillus and Penicillium) are natural coffee contaminants. The aim of this study was to investigate the distribution of fungi in Coffea arabica L. (Arabica coffee) and Coffea canephora L. var. robusta (Robusta coffee) green coffee samples obtained from different sources at the pre-roasting stage. Twenty-eight green coffee samples from different countries of origin (Brazil, Timor, Honduras, Angola, Vietnam, Costa Rica, Colombia, Guatemala, Nicaragua, India, and Uganda) were evaluated. The fungal load in the contaminated samples ranged from 0 to 12330 colony forming units (CFU)/g, of which approximately 67% presented contamination levels below 1500 CFU/g, while 11% exhibited intermediate contamination levels between 1500 and 3000 CFU/g. Contamination levels higher than 3000 CFU/g were found in 22% of contaminated coffee samples. Fifteen different fungi were isolated by culture-based methods and Aspergillus species belonging to different sections (complexes). The predominant Aspergillus section detected was Nigri (39%), followed by Aspergillus section Circumdati (29%). Molecular analysis detected the presence of Aspergillus sections Fumigati and Circumdati. The% coffee samples where Aspergillus species were identified by culture-based methods were 96%. Data demonstrated that green coffee beans samples were contaminated with toxigenic fungal species. Since mycotoxins may be resistant to the roasting process, this suggests possible exposure to mycotoxins through consumption of coffee. Further studies need to be conducted to provide information on critical points of coffee processing, such that fungal contamination may be reduced or eliminated and thus exposure to fungi and mycotoxins through coffee handling and consumption be prevented.


Asunto(s)
Café/microbiología , Microbiología de Alimentos , Aspergillus , Penicillium , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
J Microencapsul ; 34(2): 203-217, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28378596

RESUMEN

The aim of this study was to develop a novel BCG-loaded chitosan vaccine with high association efficiency which can afford efficient interaction with APC and elicit local and Th1-type-specific immune response after intranasal administration. Chitosan-suspended BCG and BCG-loaded chitosan-alginate microparticles were prepared by ionotropic gelation. Interaction with APC was evaluated by fluorescence microscopy using rBCG-GFP. Specific immune responses were evaluated following intranasal immunisation of mice. Cellular uptake was approximately two-fold higher for chitosan-suspended BCG. A single dose of BCG-loaded microparticles or chitosan-suspended BCG by intranasal route improved Th1-type response compared with subcutaneous BCG. Chitosan-suspended BCG originated the highest mucosal response in the lungs by intranasal route. These positive results indicate that the proposed approach of whole live BCG microencapsulation in chitosan-alginate for intranasal immunisation was successful in allowing efficient interaction with APC, while improving the cellular immune response, which is of interest for local immunisation against tuberculosis.


Asunto(s)
Vacuna BCG/química , Quitosano/química , Macrófagos/efectos de los fármacos , Administración Intranasal , Animales , Anticuerpos Antibacterianos/sangre , Vacuna BCG/administración & dosificación , Femenino , Humanos , Inmunoglobulina A/análisis , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos BALB C , Mycobacterium bovis , Células THP-1
12.
J Occup Environ Hyg ; 14(10): 771-785, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28609213

RESUMEN

The genus Aspergillus is one of the most prevalent regarding fungi in several highly contaminated occupational environments. The goal of the current study was to assess the prevalence of Aspergillus spp. in different settings, focusing on those where a higher load of fungal contamination is expected according to the European Agency for Safety and Health at Work. A specific protocol to ensure a more accurate assessment of the exposure to Aspergillus spp. is proposed aimed at allowing a detailed risk characterization and management. Two wastewater treatment plants, one wastewater elevation plant, four waste treatment plants, three cork industries, five slaughter houses, four feed industries, one poultry pavilion, and two swineries, all located in the outskirts of Lisbon, were assessed. In total, 125 air samples and 125 surface samples were collected and analysed by culture-based methods. Real-time polymerase chain reaction was performed to detect fungal presence in 100 samples, targeting the Aspergillus sections Circumdati, Flavi, and Fumigati. The highest prevalence of Aspergillus spp. was found in wastewater treatment plants (69.3%; 31.1%), waste treatment plants (34.8%; 73.6%), and poultry feed industry (6.3%; 26.1%), in air and surfaces, respectively. Aspergillus spp. was also prevalent in cork industry (0.9%; 23.4%), slaughter houses (1.6%; 17.7%), and swineries (7.4%; 9.5%), in air and surfaces, respectively. The Aspergillus sections more prevalent in the air and surfaces of all the assessed settings were the Nigri section (47.46%; 44.71%, respectively), followed by Fumigati (22.28%; 27.97%, respectively) and Flavi (10.78%; 11.45%, respectively) sections. Aspergillus section Fumigati was successfully amplified by qPCR in 18 sampling sites where the presence of this fungal species had not been identified by conventional methods. It should be highlighted that the occupational exposure burden is due not only to the Aspergillus load, but also to the toxigenic potential of this genus. Based on our results, a protocol relied in the application of conventional and molecular methods in parallel is herein suggested aimed at allowing a better risk characterization and management.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Aspergillus/clasificación , Monitoreo del Ambiente/métodos , Mataderos , Microbiología del Aire , Contaminación del Aire Interior/análisis , Alimentación Animal , Crianza de Animales Domésticos , Animales , Portugal , Instalaciones de Eliminación de Residuos , Purificación del Agua
13.
Front Public Health ; 12: 1355094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915753

RESUMEN

Introduction: The presence of the Penicillium section Aspergilloides (formerly known as Penicillium glabrum) in the cork industry involves the risk of respiratory diseases such as suberosis. Methods: The aim of this study was to corroborate the predominant fungi present in this occupational environment by performing a mycological analysis of 360 workers' nasal exudates collected by nasal swabs. Additionally, evaluation of respiratory disorders among the cork workers was also performed by spirometry. Results: Penicillium section Aspergilloides was detected by qPCR in 37 out of the 360 nasal swabs collected from workers' samples. From those, 25 remained negative for Penicillium sp. when using culture-based methods. A significant association was found between ventilatory defects and years of work in the cork industry, with those people working for 10 or more years in this industry having an approximately two-fold increased risk of having ventilatory defects compared to those working less time in this setting. Among the workers who detected the presence of Penicillium section Aspergilloides, those with symptoms presented slightly higher average values of CFU. Discussion: Overall, the results obtained in this study show that working in the cork industry may have adverse effects on worker's respiratory health. Nevertheless, more studies are needed (e.g., using serological assays) to clarify the impact of each risk factor (fungi and dust) on disease etiology.


Asunto(s)
Exposición Profesional , Penicillium , Humanos , Exposición Profesional/efectos adversos , Portugal , Penicillium/aislamiento & purificación , Masculino , Adulto , Persona de Mediana Edad , Femenino , Espirometría , Industrias
14.
Microorganisms ; 12(6)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38930597

RESUMEN

Microbial contamination poses a threat to both the preservation of library and archival collections and the health of staff and users. This study investigated the microbial communities and potential health risks associated with the UNESCO-classified Norwegian Sea Trade Archive (NST Archive) collection exhibiting visible microbial colonization and staff health concerns. Dust samples from book surfaces and the storage environment were analysed using culturing methods, qPCR, Next Generation Sequencing, and mycotoxin, cytotoxicity, and azole resistance assays. Penicillium sp., Aspergillus sp., and Cladosporium sp. were the most common fungi identified, with some potentially toxic species like Stachybotrys sp., Toxicladosporium sp., and Aspergillus section Fumigati. Fungal resistance to azoles was not detected. Only one mycotoxin, sterigmatocystin, was found in a heavily contaminated book. Dust extracts from books exhibited moderate to high cytotoxicity on human lung cells, suggesting a potential respiratory risk. The collection had higher contamination levels compared to the storage environment, likely due to improved storage conditions. Even though overall low contamination levels were obtained, these might be underestimated due to the presence of salt (from cod preservation) that could have interfered with the analyses. This study underlines the importance of monitoring microbial communities and implementing proper storage measures to safeguard cultural heritage and staff well-being.

15.
Environ Pollut ; 350: 123976, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657893

RESUMEN

The lack of knowledge regarding the extent of microbial contamination in Portuguese fitness centers (FC) puts attendees and athletes at risk for bioaerosol exposure. This study intends to characterize microbial contamination in Portuguese FC by passive sampling methods: electrostatic dust collectors (EDC) (N = 39), settled dust (N = 8), vacuum filters (N = 8), and used cleaning mops (N = 12). The obtained extracts were plated in selective culture media for fungi and bacteria. Filters, EDC, and mop samples' extracts were also screened for antifungal resistance and used for the molecular detection of the selected Aspergillus sections. The detection of mycotoxins was conducted using a high-performance liquid chromatograph (HPLC) system and to determine the cytotoxicity of microbial contaminants recovered by passive sampling, HepG2 (human liver carcinoma) and A549 (human alveolar epithelial) cells were employed. The results reinforce the use of passive sampling methods to identify the most critical areas and identify environmental factors that influence microbial contamination, namely having a swimming pool. The cardio fitness area presented the highest median value of total bacteria (TSA: 9.69 × 102 CFU m-2.day-1) and Gram-negative bacteria (VRBA: 1.23 CFU m-2.day-1), while for fungi it was the open space area, with 1.86 × 101 CFU m-2.day-1. Aspergillus sp. was present in EDC and in filters used to collect settled dust. Reduced azole susceptibility was observed in filters and EDC (on ICZ and VCZ), and in mops (on ICZ). Fumonisin B2 was the only mycotoxin detected and it was present in all sampling matrixes except settled dust. High and moderate cytotoxicity was obtained, suggesting that A549 cells were more sensitive to samples' contaminants. The observed widespread of critical toxigenic fungal species with clinical relevance, such as Aspergillus section Fumigati, as well as Fumonisin B2 emphasizes the importance of frequent and effective cleaning procedures while using shared mops appeared as a vehicle of cross-contamination.


Asunto(s)
Microbiología del Aire , Monitoreo del Ambiente , Hongos , Portugal , Humanos , Monitoreo del Ambiente/métodos , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Micotoxinas/análisis , Polvo/análisis , Células Hep G2 , Células A549 , Bacterias/aislamiento & purificación
16.
Int J Food Microbiol ; 385: 110015, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36403330

RESUMEN

Despite tea beneficial health effects, there is a substantial risk of tea contamination by harmful pathogens and mycotoxins. A total of 40 tea samples (17 green (raw) tea; 13 black (fermented) tea; 10 herbal infusions or white tea) were purchased from different markets located in Lisbon district during 2020. All products were directly available to consumers either in bulk (13) and or in individual packages (27). Bacterial analysis was performed by inoculating 150 µL of samples extracts in tryptic soy agar (TSA) supplemented with 0.2 % nystatin medium for mesophilic bacteria, and in Violet Red bile agar (VRBA) medium for coliforms (Gram-negative bacteria). Fungal research was performed by spreading 150 µL of samples in malt extract agar (MEA) supplemented with 0.05 % chloramphenicol and in dichloran-glycerol agar (DG18) media. The molecular detection of the Aspergillus sections Fumigati, Nidulantes, Circumdati and Flavi was carried out by Real Time PCR (qPCR). Detection of mycotoxins was performed using high performance liquid chromatograph (HPLC) with a mass spectrometry detector. Azole resistance screening was achieved following the EUCAST guidelines. The highest counts of total bacteria (TSA) were obtained in green raw tea (81.6 %), while for coliform counts (VRBA) were found in samples from black raw tea (96.2 %). The highest fungal counts were obtained in green raw tea (87.7 % MEA; 69.6 % DG18). Aspergillus sp. was the most prevalent genus in all samples on MEA (54.3 %) and on DG18 (56.2 %). In the raw tea 23 of the samples (57.5 %) presented contamination by one to five mycotoxins in the same sample. One Aspergillus section Fumigati isolate from green tea beverage recovered form itraconazole-Sabouraud dextrose agar (SDA) medium, presented itraconazole and posaconazole E-test MICs above MIC90 values. Our findings open further discussion regarding the One-Health approach and the necessary investment in researching biological hazards and azole-resistance associated with the production and consumption of tea (in particular green tea).


Asunto(s)
Camellia sinensis , Micotoxinas , Salud Única , Agar , Aspergillus , Azoles , Bacterias , Medios de Cultivo/análisis , Itraconazol/análisis , Micotoxinas/análisis , Té/microbiología
17.
Sci Total Environ ; 875: 162602, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36878289

RESUMEN

Microbial contamination in grocery shops (GS) should be evaluated since food commodities are commonly handled by workers and customers increasing the risk of food contamination and disease transmission. The aim of this study was to evaluate the microbial contamination in Portuguese and Spanish GS with a multi-approach protocol using passive (electrostatic dust cloths and surface swabs) sampling methods. The molecular detection of Aspergillus sections, mycotoxin analysis, screening of azole resistance as well as cytotoxicity measurement were conducted to better estimate the potential health risks of exposure and to identify possible relations between the risk factors studied. Fruits/vegetables sampling location was the one identified has being the most contaminated (bacteria and fungi) area in GS from both countries. Aspergillus section Fumigati and Fusarium species were observed in samples from Portuguese groceries with reduced susceptibilities to azoles commonly used in the clinical treatment of fungal infections. Fumonisin B2 was detected in Portuguese GS possible unveiling this emergent threat concerning occupational exposure and food safety. Overall, the results obtained raise concerns regarding human health and food safety and must be surveilled applying a One Health approach.


Asunto(s)
Micotoxinas , Salud Única , Humanos , Portugal , España , Supermercados , Micotoxinas/análisis , Aspergillus , Contaminación de Alimentos/análisis , Frutas/química
18.
Front Public Health ; 11: 1297725, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38179569

RESUMEN

Introduction: It is of upmost importance to contribute to fill the knowledge gap concerning the characterization of the occupational exposure to microbial agents in the waste sorting setting (automated and manual sorting). Methods: This study intends to apply a comprehensive field sampling and laboratory protocol (culture based-methods and molecular tools), assess fungal azole resistance, as well as to elucidate on potential exposure related health effects (cytotoxicity analyses). Skin-biota samples (eSwabs) were performed on workers and controls to identify other exposure routes. Results: In personal filter samples the guidelines in one automated industry surpassed the guidelines for fungi. Seasonal influence on viable microbial contamination including fungi with reduced susceptibility to the tested azoles was observed, besides the observed reduced susceptibility of pathogens of critical priority (Mucorales and Fusarium sp.). Aspergillus sections with potential toxigenic effect and with clinical relevance were also detected in all the sampling methods. Discussion: The results regarding skin-biota in both controls´ and workers´ hands claim attention for the possible exposure due to hand to face/mouth contact. This study allowed concluding that working in automated and manual waste sorting plants imply high exposure to microbial agents.


Asunto(s)
Monitoreo del Ambiente , Exposición Profesional , Humanos , Monitoreo del Ambiente/métodos , Exposición Profesional/análisis , Aspergillus , Noruega
19.
Toxins (Basel) ; 14(5)2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35622594

RESUMEN

Cemeteries are potential environmental reservoirs of pathogenic microorganisms from organic matter decomposition. This study aimed to characterize the microbial contamination in three cemeteries, and more specifically in grave diggers' facilities. One active sampling method (impingement method) and several passive sampling methods (swabs, settled dust, settled dust filters and electrostatic dust cloths-EDC) were employed. The molecular detection of Aspergillus sections and SARS-CoV-2, as well as mycotoxin analysis, screening of azole resistance, and cytotoxicity measurement were also conducted. Total bacteria contamination was 80 CFU·m-2 in settled dust samples, reached 849 CFU·m-2 in EDC and 20,000 CFU·m-2 in swabs, and ranged from 5000 to 10,000 CFU·m-2 in filters. Gram-negative bacteria (VRBA) were only observed in in settled dust samples (2.00 × 105 CFU·m-2). Regarding Aspergillus sp., the highest counts were obtained in DG18 (18.38%) and it was not observed in azole-supplemented SDA media. SARS-CoV-2 and the targeted Aspergillus sections were not detected. Mycophenolic acid was detected in one settled dust sample. Cytotoxic effects were observed for 94.4% filters and 5.6% EDC in A549 lung epithelial cells, and for 50.0% filters and 5.6% EDC in HepG2 cells. Future studies are needed in this occupational setting to implement more focused risk management measures.


Asunto(s)
COVID-19 , Microbiota , Aspergillus , Azoles , Cementerios , Polvo/análisis , Portugal , SARS-CoV-2
20.
Microorganisms ; 10(8)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-36014012

RESUMEN

Assuring a proper environment for the fulfillment of professional activities is one of the Sustainable Development Goals and is contemplated in the One Health approach assumed by the World Health Organization. This particular study is applied to an often neglected sector of our society-the conservators/restorers-despite the many health issues reported by these professionals. Three different specialties (textiles, paintings and wood sculpture) and locations were selected for evaluation by placement of electrostatic dust cloths. After treatment of the samples, bacterial and fungal contamination were assessed, as well as mycotoxin determination, the presence of azole-resistant strains and cytotoxicity of the microorganisms encountered. Bacteria were only present in one of medias used and showed relatively low numbers. The highest level of contamination by fungi was identified in one of the textiles settings. The textile area also showed the highest variability for fungi. Aspergillus sp. are one indicator of possible environmental issues, and A. sections Fumigati and Circumdati were particularly relevant in two of the settings and identified in all of them. No mycotoxins were detected and the large majority of the fungi identified were non-cytotoxic. Overall, these can be considered low-contaminated environments but attention should be given to the Aspergillus sp. contamination. Additional studies are needed not only to make these results more robust, but also to test if the environmental sampling alone is the best approach in a setting where there is very little movement and dust displacement and where professionals are in very close proximity to the artefacts being treated, which may suggest the existence of a micro-atmosphere worth evaluating and comparing to the obtained results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA