Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(18): e2316867121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657051

RESUMEN

The term defect tolerance (DT) is used often to rationalize the exceptional optoelectronic properties of halide perovskites (HaPs) and their devices. Even though DT lacked direct experimental evidence, it became a "fact" in the field. DT in semiconductors implies that structural defects do not translate to electrical and optical effects (e.g., due to charge trapping), associated with such defects. We present pioneering direct experimental evidence for DT in Pb-HaPs by comparing the structural quality of 2-dimensional (2D), 2D-3D, and 3D Pb-iodide HaP crystals with their optoelectronic characteristics using high-sensitivity methods. Importantly, we get information from the materials' bulk because we sample at least a few hundred nanometers, up to several micrometers, from the sample's surface, which allows for assessing intrinsic bulk (and not only surface-) properties of HaPs. The results point to DT in 3D, 2D-3D, and 2D Pb-HaPs. Overall, our data provide an experimental basis to rationalize DT in Pb-HaPs. These experiments and findings will help the search for and design of materials with real DT.

2.
Proc Natl Acad Sci U S A ; 119(10): e2114740119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35239436

RESUMEN

SignificanceSurface engineering of halide perovskites (HaPs), semiconductors with amazing optoelectronic properties, is critical to improve the performance and ambient stability of HaP-based solar cells and light emitting diodes (LEDs). Ultrathin layers of two-dimensional (2D) analogs of the three-dimensional (3D) HaPs are particularly attractive for this because of their chemical similarities but higher ambient stability. But do such 2D/3D interfaces actually last, given that ions in HaPs move readily-i.e., what happens at those interfaces on the atomic scale? A special electron microscopy, which as a bonus also reveals the true conditions for nondestructive analysis, shows that the large ions that are a necessary part of the 2D films can move into the 3D HaP, a fascinating illustration of panta rei in HaPs.

3.
Nano Lett ; 23(3): 1052-1060, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36706048

RESUMEN

Efficient and stable electrocatalysts are critically needed for the development of practical overall seawater splitting. The nanocomposite of RuCoBO has been rationally engineered to be an electrocatalyst that fits these criteria. The study has shown that a calcinated RuCoBO-based nanocomposite (Ru2Co1BO-350) exhibits an extremely high catalytic activity for H2 and O2 production in alkaline seawater (overpotentials of 14 mV for H2 evolution and 219 mV for O2 evolution) as well as a record low cell voltage (1.466 V@10 mA cm-2) and long-term stability (230 h @50 mA cm-2 and @100 mA cm-2) for seawater splitting. The results show that surface reconstruction of Ru2Co1BO-350 occurs during hydrogen evolution reaction and oxygen evolution reaction, which leads to the high activity and stability of the catalyst. The reconstructed surface is highly resistant to Cl- corrosion. The investigation suggests that a new strategy exists for the design of high-performance Ru-based electrocatalysts that resist anodic corrosion during seawater splitting.

4.
J Am Chem Soc ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37933117

RESUMEN

A key conundrum of biomolecular electronics is efficient electron transport (ETp) through solid-state junctions up to 10 nm, often without temperature activation. Such behavior challenges known charge transport mechanisms, especially via nonconjugated molecules such as proteins. Single-step, coherent quantum-mechanical tunneling proposed for ETp across small protein, 2-3 nm wide junctions, but it is problematic for larger proteins. Here we exploit the ability of bacteriorhodopsin (bR), a well-studied, 4-5 nm long membrane protein, to assemble into well-defined single and multiple bilayers, from ∼9 to 60 nm thick, to investigate ETp limits as a function of junction width. To ensure sufficient signal/noise, we use large area (∼10-3 cm2) Au-protein-Si junctions. Photoemission spectra indicate a wide energy separation between electrode Fermi and the nearest protein-energy levels, as expected for a polymer of mostly saturated components. Junction currents decreased exponentially with increasing junction width, with uniquely low length-decay constants (0.05-0.5 nm-1). Remarkably, even for the widest junctions, currents are nearly temperature-independent, completely so below 160 K. While, among other things, the lack of temperature-dependence excludes, hopping as a plausible mechanism, coherent quantum-mechanical tunneling over 60 nm is physically implausible. The results may be understood if ETp is limited by injection into one of the contacts, followed by more efficient charge propagation across the protein. Still, the electrostatics of the protein films further limit the number of charge carriers injected into the protein film. How electron transport across dozens of nanometers of protein layers is more efficient than injection defines a riddle, requiring further study.

5.
Langmuir ; 39(4): 1394-1403, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36648410

RESUMEN

The electron transport (ETp) efficiency of solid-state protein-mediated junctions is highly influenced by the presence of electron-rich organic cofactors or transition metal ions. Hence, we chose to investigate an interesting cofactor-free non-redox protein, streptavidin (STV), which has unmatched strong binding affinity for an organic small-molecule ligand, biotin, which lacks any electron-rich features. We describe for the first time meso-scale ETp via electrical junctions of STV monolayers and focus on the question of whether the rate of ETp across both native and thiolated STV monolayers is influenced by ligand binding, a process that we show to cause some structural conformation changes in the STV monolayers. Au nanowire-electrode-protein monolayer-microelectrode junctions, fabricated by modifying an earlier procedure to improve the yields of usable junctions, were employed for ETp measurements. Our results on compactly integrated, dense, uniform, ∼3 nm thick STV monolayers indicate that, notwithstanding the slight structural changes in the STV monolayers upon biotin binding, there is no statistically significant conductance change between the free STV and that bound to biotin. The ETp temperature (T) dependence over the 80-300 K range is very small but with an unusual, slightly negative (metallic-like) dependence toward room temperature. Such dependence can be accounted for by the reversible structural shrinkage of the STV at temperatures below 160 K.

6.
Small ; 18(42): e2203778, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36103609

RESUMEN

An electrocatalyst composed of RuO2 surrounded by interfacial carbon, is synthesized through controllable oxidization-calcination. This electrocatalyst provides efficient charge transfer, numerous active sites, and promising activity for pH-universal electrocatalytic overall seawater splitting. An electrolyzer with this catalyst gives current densities of 10 mA cm-2 at a record low cell voltage of 1.52 V, and shows excellent durability at current densities of 10 mA cm-2 for up to 100 h. Based on the results, a mechanism for the catalytic activity of the composite is proposed. Finally, a solar-driven system is assembled and used for overall seawater splitting, showing 95% Faraday efficiency.

7.
Phys Chem Chem Phys ; 24(47): 28878-28885, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36441625

RESUMEN

A way of modulating the solid-state electron transport (ETp) properties of oligopeptide junctions is presented by charges and internal hydrogen bonding, which affect this process markedly. The ETp properties of a series of tyrosine (Tyr)-containing hexa-alanine peptides, self-assembled in monolayers and sandwiched between gold electrodes, are investigated in response to their protonation state. Inserting a Tyr residue into these peptides enhances the ETp carried via their junctions. Deprotonation of the Tyr-containing peptides causes a further increase of ETp efficiency that depends on this residue's position. Combined results of molecular dynamics simulations and spectroscopic experiments suggest that the increased conductance upon deprotonation is mainly a result of enhanced coupling between the charged C-terminus carboxylate group and the adjacent Au electrode. Moreover, intra-peptide hydrogen bonding of the Tyr hydroxyl to the C-terminus carboxylate reduces this coupling. Hence, the extent of such a conductance change depends on the Tyr-carboxylate distance in the peptide's sequence.


Asunto(s)
Alanina , Tirosina , Enlace de Hidrógeno , Transporte de Electrón , Péptidos
8.
Small ; 17(19): e2008218, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33783130

RESUMEN

A central issue in protein electronics is how far the structural stability of the protein is preserved under the very high electrical field that it will experience once a bias voltage is applied. This question is studied on the redox protein Azurin in the solid-state Au/protein/Au junction by monitoring protein vibrations during current transport under applied bias, up to ≈1 GV m-1 , by electrical detection of inelastic electron transport effects. Characteristic vibrational modes, such as CH stretching, amide (NH) bending, and AuS (of the bonds that connect the protein to an Au electrode), are not found to change noticeably up to 1.0 V. At >1.0 V, the NH bending and CH stretching inelastic features have disappeared, while the AuS features persist till ≈2 V, i.e., the proteins remain Au bound. Three possible causes for the disappearance of the NH and CH inelastic features at high bias, namely, i) resonance transport, ii) metallic filament formation, and iii) bond rupture leading to structural changes in the protein are proposed and tested. The results support the last option and indicate that spectrally resolved inelastic features can serve to monitor in operando structural stability of biological macromolecules while they serve as electronic current conduit.


Asunto(s)
Azurina , Electrones , Azurina/metabolismo , Electrodos , Transporte de Electrón , Análisis Espectral
9.
Chem Rev ; 119(5): 3349-3417, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30821958

RESUMEN

Design and modification of interfaces, always a critical issue for semiconductor devices, has become a primary tool to harness the full potential of halide perovskite (HaP)-based optoelectronics, including photovoltaics and light-emitting diodes. In particular, the outstanding improvements in HaP solar cell performance and stability can be primarily ascribed to a careful choice of the interfacial layout in the layer stack. In this review, we describe the unique challenges and opportunities of these approaches (section 1). For this purpose, we first elucidate the basic physical and chemical properties of the exposed HaP thin film and crystal surfaces, including topics such as surface termination, surface reactivity, and electronic structure (section 2). This is followed by discussing experimental results on the energetic alignment processes at the interfaces between the HaP and transport and buffer layers. This section includes understandings reached as well as commonly proposed and applied models, especially the often-questionable validity of vacuum level alignment, the importance of interface dipoles, and band bending as the result of interface formation (section 3). We follow this by elaborating on the impact of the interface formation on device performance, considering effects such as chemical reactions and surface passivation on interface energetics and stability. On the basis of these concepts, we propose a roadmap for the next steps in interfacial design for HaP semiconductors (section 4), emphasizing the importance of achieving control over the interface energetics and chemistry (i.e., reactivity) to allow predictive power for tailored interface optimization.

10.
Proc Natl Acad Sci U S A ; 115(20): E4577-E4583, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29712853

RESUMEN

Metalloproteins, proteins containing a transition metal ion cofactor, are electron transfer agents that perform key functions in cells. Inspired by this fact, electron transport across these proteins has been widely studied in solid-state settings, triggering the interest in examining potential use of proteins as building blocks in bioelectronic devices. Here, we report results of low-temperature (10 K) electron transport measurements via monolayer junctions based on the blue copper protein azurin (Az), which strongly suggest quantum tunneling of electrons as the dominant charge transport mechanism. Specifically, we show that, weakening the protein-electrode coupling by introducing a spacer, one can switch the electron transport from off-resonant to resonant tunneling. This is a consequence of reducing the electrode's perturbation of the Cu(II)-localized electronic state, a pattern that has not been observed before in protein-based junctions. Moreover, we identify vibronic features of the Cu(II) coordination sphere in transport characteristics that show directly the active role of the metal ion in resonance tunneling. Our results illustrate how quantum mechanical effects may dominate electron transport via protein-based junctions.


Asunto(s)
Cobre/química , Electrones , Metaloproteínas/química , Modelos Teóricos , Transporte de Electrón , Humanos , Temperatura
11.
J Am Chem Soc ; 142(45): 19217-19225, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33141577

RESUMEN

We observe reversible, bias-induced switching of conductance via a blue copper protein azurin mutant, N42C Az, with a nearly 10-fold increase at |V| > 0.8 V than at lower bias. No such switching is found for wild-type azurin, WT Az, up to |1.2 V|, beyond which irreversible changes occur. The N42C Az mutant will, when positioned between electrodes in a solid-state Au-protein-Au junction, have an orientation opposite that of WT Az with respect to the electrodes. Current(s) via both proteins are temperature-independent, consistent with quantum mechanical tunneling as dominant transport mechanism. No noticeable difference is resolved between the two proteins in conductance and inelastic electron tunneling spectra at <|0.5 V| bias voltages. Switching behavior persists from 15 K up to room temperature. The conductance peak is consistent with the system switching in and out of resonance with the changing bias. With further input from UV photoemission measurements on Au-protein systems, these striking differences in conductance are rationalized by having the location of the Cu(II) coordination sphere in the N42C Az mutant, proximal to the (larger) substrate-electrode, to which the protein is chemically bound, while for the WT Az that coordination sphere is closest to the other Au electrode, with which only physical contact is made. Our results establish the key roles that a protein's orientation and binding nature to the electrodes play in determining the electron transport tunnel barrier.


Asunto(s)
Azurina/metabolismo , Azurina/química , Azurina/genética , Cobre/química , Electrodos , Transporte de Electrón , Oro/química , Oro/metabolismo , Mutagénesis , Espectroscopía de Fotoelectrones , Unión Proteica , Teoría Cuántica , Temperatura
12.
Proc Natl Acad Sci U S A ; 114(28): E5504-E5512, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28588141

RESUMEN

Halide perovskite (HaP) semiconductors are revolutionizing photovoltaic (PV) solar energy conversion by showing remarkable performance of solar cells made with HaPs, especially tetragonal methylammonium lead triiodide (MAPbI3). In particular, the low voltage loss of these cells implies a remarkably low recombination rate of photogenerated carriers. It was suggested that low recombination can be due to the spatial separation of electrons and holes, a possibility if MAPbI3 is a semiconducting ferroelectric, which, however, requires clear experimental evidence. As a first step, we show that, in operando, MAPbI3 (unlike MAPbBr3) is pyroelectric, which implies it can be ferroelectric. The next step, proving it is (not) ferroelectric, is challenging, because of the material's relatively high electrical conductance (a consequence of an optical band gap suitable for PV conversion) and low stability under high applied bias voltage. This excludes normal measurements of a ferroelectric hysteresis loop, to prove ferroelectricity's hallmark switchable polarization. By adopting an approach suitable for electrically leaky materials as MAPbI3, we show here ferroelectric hysteresis from well-characterized single crystals at low temperature (still within the tetragonal phase, which is stable at room temperature). By chemical etching, we also can image the structural fingerprint for ferroelectricity, polar domains, periodically stacked along the polar axis of the crystal, which, as predicted by theory, scale with the overall crystal size. We also succeeded in detecting clear second harmonic generation, direct evidence for the material's noncentrosymmetry. We note that the material's ferroelectric nature, can, but need not be important in a PV cell at room temperature.

13.
Chem Rev ; 117(5): 4624-4666, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28230354

RESUMEN

Inserting molecular monolayers within metal/semiconductor interfaces provides one of the most powerful expressions of how minute chemical modifications can affect electronic devices. This topic also has direct importance for technology as it can help improve the efficiency of a variety of electronic devices such as solar cells, LEDs, sensors, and possible future bioelectronic ones. The review covers the main aspects of using chemistry to control the various aspects of interface electrostatics, such as passivation of interface states and alignment of energy levels by intrinsic molecular polarization, as well as charge rearrangement with the adjacent metal and semiconducting contacts. One of the greatest merits of molecular monolayers is their capability to form excellent thin dielectrics, yielding rich and unique current-voltage characteristics for transport across metal/molecular monolayer/semiconductor interfaces. We explain the interplay between the monolayer as tunneling barrier on the one hand, and the electrostatic barrier within the semiconductor, due to its space-charge region, on the other hand, as well as how different monolayer chemistries control each of these barriers. Practical tools to experimentally identify these two barriers and distinguish between them are given, followed by a short look to the future. This review is accompanied by another one, concerning the formation of large-area molecular junctions and charge transport that is dominated solely by molecules.

14.
Chem Rev ; 117(5): 4248-4286, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28177226

RESUMEN

We review charge transport across molecular monolayers, which is central to molecular electronics (MolEl), using large-area junctions (NmJ). We strive to provide a wide conceptual overview of three main subtopics. First, a broad introduction places NmJ in perspective to related fields of research and to single-molecule junctions (1mJ) in addition to a brief historical account. As charge transport presents an ultrasensitive probe for the electronic perfection of interfaces, in the second part ways to form both the monolayer and the contacts are described to construct reliable, defect-free interfaces. The last part is dedicated to understanding and analyses of current-voltage (I-V) traces across molecular junctions. Notwithstanding the original motivation of MolEl, I-V traces are often not very sensitive to molecular details and then provide a poor probe for chemical information. Instead, we focus on how to analyze the net electrical performance of molecular junctions, from a functional device perspective. Finally, we point to creation of a built-in electric field as a key to achieve functionality, including nonlinear current-voltage characteristics that originate in the molecules or their contacts to the electrodes. This review is complemented by a another review that covers metal-molecule-semiconductor junctions and their unique hybrid effects.

15.
Proc Natl Acad Sci U S A ; 113(39): 10785-90, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27621456

RESUMEN

Charge migration for electron transfer via the polypeptide matrix of proteins is a key process in biological energy conversion and signaling systems. It is sensitive to the sequence of amino acids composing the protein and, therefore, offers a tool for chemical control of charge transport across biomaterial-based devices. We designed a series of linear oligoalanine peptides with a single tryptophan substitution that acts as a "dopant," introducing an energy level closer to the electrodes' Fermi level than that of the alanine homopeptide. We investigated the solid-state electron transport (ETp) across a self-assembled monolayer of these peptides between gold contacts. The single tryptophan "doping" markedly increased the conductance of the peptide chain, especially when its location in the sequence is close to the electrodes. Combining inelastic tunneling spectroscopy, UV photoelectron spectroscopy, electronic structure calculations by advanced density-functional theory, and dc current-voltage analysis, the role of tryptophan in ETp is rationalized by charge tunneling across a heterogeneous energy barrier, via electronic states of alanine and tryptophan, and by relatively efficient direct coupling of tryptophan to a Au electrode. These results reveal a controlled way of modulating the electrical properties of molecular junctions by tailor-made "building block" peptides.


Asunto(s)
Alanina/química , Electrones , Péptidos/química , Triptófano/química , Electricidad , Modelos Teóricos , Temperatura
16.
Angew Chem Int Ed Engl ; 58(34): 11852-11859, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31246354

RESUMEN

A sample-type protein monolayer, that can be a stepping stone to practical devices, can behave as an electrically driven switch. This feat is achieved using a redox protein, cytochrome C (CytC), with its heme shielded from direct contact with the solid-state electrodes. Ab initio DFT calculations, carried out on the CytC-Au structure, show that the coupling of the heme, the origin of the protein frontier orbitals, to the electrodes is sufficiently weak to prevent Fermi level pinning. Thus, external bias can bring these orbitals in and out of resonance with the electrode. Using a cytochrome C mutant for direct S-Au bonding, approximately 80 % of the Au-CytC-Au junctions show at greater than 0.5 V bias a clear conductance peak, consistent with resonant tunneling. The on-off change persists up to room temperature, demonstrating reversible, bias-controlled switching of a protein ensemble, which, with its built-in redundancy, provides a realistic path to protein-based bioelectronics.


Asunto(s)
Citocromos c/química , Citocromos c/metabolismo , Conductividad Eléctrica , Electrodos , Hemo/química , Hierro/química , Electroquímica , Transporte de Electrón , Humanos , Oxidación-Reducción , Conformación Proteica
17.
J Am Chem Soc ; 140(41): 13317-13326, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30235415

RESUMEN

Making biomolecular electronics a reality will require control over charge transport across biomolecules. Here we show that chemical modulation of the coupling between one of the electronic contacts and the biomolecules in a solid-state junction allows controlling electron transport (ETp) across the junction. Employing the protein azurin (Az), we achieve such modulation as follows: Az is covalently bound by Au-S bonding to a lithographically prepared Au electrode (Au-Az). Au nanowires (AuNW) onto which linker molecules, with free carboxylic group, are bound via Au-S bonds serve as top electrode. Current-voltage plots of AuNW-linkerCOOH//Az-Au junctions have been shown earlier to exhibit step-like features, due to resonant tunneling through discrete Az energy levels. Forming an amide bond between the free carboxylic group of the AuNW-bound linker and Az yields AuNW-linkerCO-NH-Az-Au junctions. This Az-linker bond switches the ETp mechanism from resonant to off-resonant tunneling. By varying the extent of this amide bonding, the current-voltage dependence can be controlled between these two mechanisms, thus providing a platform for altering and controlling the ETp mechanism purely by chemical modification in a two-terminal device, i.e., without a gate electrode. Using results from conductance, including the energy barrier and electrode-molecule coupling parameters extracted from current-voltage fitting and normalized differential conductance analysis and from inelastic-electron-tunneling and photoelectron spectroscopies, we determine the Az frontier orbital energies, with respect to the Au Fermi level, for four junction configurations, differing only in electrode-protein coupling. Our approach and findings open the way to both qualitative and quantitative control of biomolecular electronic junctions.

18.
Rep Prog Phys ; 81(2): 026601, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29303117

RESUMEN

We review the status of protein-based molecular electronics. First, we define and discuss fundamental concepts of electron transfer and transport in and across proteins and proposed mechanisms for these processes. We then describe the immobilization of proteins to solid-state surfaces in both nanoscale and macroscopic approaches, and highlight how different methodologies can alter protein electronic properties. Because immobilizing proteins while retaining biological activity is crucial to the successful development of bioelectronic devices, we discuss this process at length. We briefly discuss computational predictions and their connection to experimental results. We then summarize how the biological activity of immobilized proteins is beneficial for bioelectronic devices, and how conductance measurements can shed light on protein properties. Finally, we consider how the research to date could influence the development of future bioelectronic devices.


Asunto(s)
Electrónica/métodos , Proteínas , Animales , Biomimética , Transporte de Electrón , Humanos , Proteínas/química , Proteínas/metabolismo
19.
Acc Chem Res ; 50(3): 573-576, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28945410

RESUMEN

Materials are central to our way of life and future. Energy and materials as resources are connected, and the obvious connections between them are the energy cost of materials and the materials cost of energy. For both of these, resilience of the materials is critical; thus, a major goal of future chemistry should be to find materials for energy that can last longer, that is, design principles for self-repair in these.

20.
Phys Chem Chem Phys ; 20(24): 16847-16852, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29892728

RESUMEN

Inorganic and organic lead halide perovskite materials attract great interest in the scientific community because of their potential for low-cost, high efficiency solar cells. In this report we add a new property of these materials, namely their photochemical activity in the visible light range. Both inorganic (CsPbBr3) and organic (CH3NH3PbBr3-MAPbBr3) perovskite thin films were demonstrated to promote photo-dissociation of adsorbed ethyl chloride (EC), employing 532 nm pulsed laser irradiation under ultra-high vacuum (UHV) conditions. From the post-irradiation temperature programmed desorption (TPD) analysis, the yield of photoproduct formation was found to be up to two orders of magnitude higher than for UV light-excited EC molecules on metallic and oxide surfaces. Photo-reactivity on top of the CsPbBr3 surface is almost an order of magnitude more efficient than on the CH3NH3PbBr3 surface, apparently due to the lower density of defect and surface states. A direct correlation was found between electron-induced luminescence and photoluminescence intensities and the photoreactivity cross-sections. We conclude that both the intense luminescence and the well-known photovoltaic properties associated with these halide perovskite materials are consistent with the efficiency of photo-reactivity in the visible range, reported here for the first time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA