Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Proteome Res ; 23(2): 775-785, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38227546

RESUMEN

Properly developed embryos are critical for successful embryo implantation. The dynamic landscape of proteins as executors of biological processes in pig peri-implantation embryos has not been reported so far. In this study, we collected pig embryos from days 9, 12, and 15 of pregnancy during the peri-implantation stage for a PASEF-based quantitative proteomic analysis. In total, approximately 8000 proteins were identified. These proteins were classified as stage-exclusive proteins and stage-specific proteins, respectively, based on their presence and dynamic abundance changes at each stage. Functional analysis showed that their roles are consistent with the physiological processes of corresponding stages, such as the biosynthesis of amino acids and peptides at P09, the regulation of actin cytoskeletal organization and complement activation at P12, and the vesicular transport at P15. Correlation analysis between mRNAs and proteins showed a general positive correlation between pig peri-implantation embryonic mRNAs and proteins. Cross-species comparisons with human early embryos identified some conserved proteins that may be important in regulating embryonic development, such as STAT3, AP2A1, and PFAS. Our study provides a comprehensive overview of the pig embryo proteome during implantation, fills gaps in relevant developmental studies, and identifies some important proteins that may serve as potential targets for future research.


Asunto(s)
Implantación del Embrión , Proteómica , Embarazo , Femenino , Porcinos , Humanos , Animales , Implantación del Embrión/fisiología , Embrión de Mamíferos/metabolismo , Péptidos/metabolismo , Proteoma/genética , Proteoma/metabolismo , Desarrollo Embrionario
2.
BMC Genomics ; 25(1): 722, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054457

RESUMEN

BACKGROUND: Teat number is a vital reproductive trait in sows, crucial for providing immunity and nutrition to piglets during lactation. However, "missing heritability" in Single Nucleotide Polymorphism (SNP)-based Genome-Wide Association Studies (GWAS) has led to an increasing focus on structural variations in the genetic analysis of complex biological traits. RESULTS: In this study, we generated a comprehensive CNV map in a population of French Yorkshire pigs (n = 644) and identified 429 CNVRs. Notably, 44% (189 CNVRs) of these were detected for the first time. Subsequently, we conducted GWAS for teat number in the French Yorkshire pig population using both 80K chip and its imputed data, as well as a GWAS analysis based on CNV regions (CNVR). Interestingly, 80K chip GWAS identified two SNPs located on Sus scrofa chromosome 5 (SSC5) that were simultaneously associated with Total Teat Number (TTN), Left Teat Number (LTN), and Right Teat Number (RTN). The leading SNP (WU_10.2_5_76130558) explained 3.33%, 2.69%, and 2.67% of the phenotypic variance for TTN, LTN, and RTN, respectively. Moreover, through imputed GWAS, we successfully identified 30 genetic variants associated with TTN located within the 73.22 -73.30 Mb region on SSC5. The two SNPs identified in the 80K chip GWAS were also located in this region. In addition, CNVR-based GWAS revealed three significant CNVRs associated with TTN. Finally, through gene annotation, we pinpointed two candidate genes, TRIM66 and PRICKLE1, which are related to diverse processes such as breast cancer and abnormal vertebral development. CONCLUSIONS: Our research provides an in-depth analysis of the complex genetic structure underlying teat number, contributing to the genetic enhancement of sows with improved reproductive performance and, ultimately, bolstering the economic benefits of swine production enterprises.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glándulas Mamarias Animales , Polimorfismo de Nucleótido Simple , Animales , Femenino , Porcinos/genética , Variaciones en el Número de Copia de ADN , Fenotipo , Sitios de Carácter Cuantitativo , Sus scrofa/genética
3.
Anim Genet ; 55(1): 134-139, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38098441

RESUMEN

This study aimed at identifying genes associated with loin muscle area (LMA), loin muscle depth (LMD) and backfat thickness (BFT). We performed single-trait and multi-trait genome-wide association studies (GWASs) after genotyping 685 Duroc × (Landrace × Yorkshire) (DLY) pigs using the Geneseek Porcine 50K SNP chip. In the single-trait GWASs, we identified two, eight and two significant SNPs associated with LMA, LMD and BFT, respectively, and searched genes within the 1 Mb region near the significant SNPs with relevant functions as candidate genes. Consequently, we identified one (DOCK5), three (PID1, PITX2, ELOVL6) and three (CCR1, PARP14, CASR) promising candidate genes for LMA, LMD and BFT, respectively. Moreover, the multi-trait GWAS identified four significant SNPs associated with the three traits. In conclusion, the GWAS analysis of LMA, LMD and BFT in a DLY pig population identified several associated SNPs and candidate genes, further deepening our understanding of the genetic basis of these traits, and they may be useful for marker-assisted selection to improve the three traits in DLY pigs.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Porcinos , Animales , Músculos , Fenotipo , Polimorfismo de Nucleótido Simple
4.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 452-461, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38419500

RESUMEN

Skeletal muscle is not only the largest organ in the body that is responsible for locomotion and exercise but also crucial for maintaining the body's energy metabolism and endocrine secretion. The trimethylation of histone H3 lysine 27 (H3K27me3) is one of the most important histone modifications that participates in muscle development regulation by repressing the transcription of genes. Previous studies indicate that the RASGRP1 gene is regulated by H3K27me3 in embryonic muscle development in pigs, but its function and regulatory role in myogenesis are still unclear. In this study, we verify the crucial role of H3K27me3 in RASGRP1 regulation. The gain/loss function of RASGRP1 in myogenesis regulation is performed using mouse myoblast C2C12 cells and primarily isolated porcine skeletal muscle satellite cells (PSCs). The results of qPCR, western blot analysis, EdU staining, CCK-8 assay and immunofluorescence staining show that overexpression of RASGRP1 promotes cell proliferation and differentiation in both skeletal muscle cell models, while knockdown of RASGRP1 leads to the opposite results. These findings indicate that RASGRP1 plays an important regulatory role in myogenesis in both mice and pigs.


Asunto(s)
Histonas , Mioblastos , Animales , Ratones , Porcinos , Histonas/metabolismo , Diferenciación Celular/genética , Proliferación Celular/genética , Mioblastos/metabolismo , Músculo Esquelético/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo
5.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39062945

RESUMEN

Birth weight is a complex multifactorial trait relevant to health states and disease risks in later life. The placenta is essential for proper fetal growth and facilitates gas, nutrient, and waste exchange between the mother and developing fetus. How changes in placental DNA methylation affect fetal birth weight remains to be fully elucidated. In this study, we used whole-genome bisulfite sequencing and RNA sequencing to reveal a global map of DNA methylation and gene expression changes between the placentas of highest birth weight and lowest birth weight piglets in the same litters. The transcriptome analysis identified 1682 differential expressed genes and revealed key transcriptional properties in distinct placentas. We also identified key transcription factors that may drive the differences in DNA methylome patterns between placentas. The decrease in DNA methylation level in the promoter was associated with the transcriptional activation of genes associated with angiogenesis, extracellular matrix remodeling, and transmembrane transport. Our results revealed the regulatory role of DNA methylation in gene transcription activity leading to the differences in placental morphological structures and birth weights of piglets. These results could provide novel clues to clarify the underlying regulatory mechanisms of placental development and fetal growth.


Asunto(s)
Peso al Nacer , Metilación de ADN , Placenta , Animales , Femenino , Embarazo , Placenta/metabolismo , Peso al Nacer/genética , Porcinos , Perfilación de la Expresión Génica , Desarrollo Fetal/genética , Regulación del Desarrollo de la Expresión Génica , Transcriptoma
6.
BMC Genomics ; 24(1): 701, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990155

RESUMEN

BACKGROUND: Aplasia cutis congenita (ACC) is a rare genetic disorder characterized by the localized or widespread absence of skin in humans and animals. Individuals with ACC may experience developmental abnormalities in the skeletal and muscular systems, as well as potential complications. Localized and isolated cases of ACC can be treated through surgical and medical interventions, while extensive cases of ACC may result in neonatal mortality. The presence of ACC in pigs has implications for animal welfare. It contributes to an elevated mortality rate among piglets at birth, leading to substantial economic losses in the pig farming industry. In order to elucidate candidate genetic loci associated with ACC, we performed a Genome-Wide Association Study analysis on 216 Duroc pigs. The primary goal of this study was to identify candidate genes that associated with ACC. RESULTS: This study identified nine significant SNPs associated with ACC. Further analysis revealed the presence of two quantitative trait loci, 483 kb (5:18,196,971-18,680,098) on SSC 5 and 159 kb (13:20,713,440-207294431 bp) on SSC13. By annotating candidate genes within a 1 Mb region surrounding the significant SNPs, a total of 11 candidate genes were identified on SSC5 and SSC13, including KRT71, KRT1, KRT4, ITGB7, CSAD, RARG, SP7, PFKL, TRPM2, SUMO3, and TSPEAR. CONCLUSIONS: The results of this study further elucidate the potential mechanisms underlying and genetic architecture of ACC and identify reliable candidate genes. These results lay the foundation for treating and understanding ACC in humans.


Asunto(s)
Displasia Ectodérmica , Estudio de Asociación del Genoma Completo , Humanos , Porcinos , Animales , Displasia Ectodérmica/genética , Displasia Ectodérmica/veterinaria , Piel , Sitios de Carácter Cuantitativo
7.
BMC Genomics ; 24(1): 412, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488487

RESUMEN

BACKGROUND: One of the most critical periods for the loss of pig embryos is the 12th day of gestation when implantation begins. Recent studies have shown that non-coding RNAs (ncRNAs) play important regulatory roles during pregnancy. Circular RNAs (circRNAs) are a kind of ubiquitously expressed ncRNAs that can directly regulate the binding proteins or regulate the expression of target genes by adsorbing micro RNAs (miRNA). RESULTS: We used the Illumina Novaseq6,000 technology to analyze the circRNA expression profile in the endometrium of three Erhualian (EH12) and three Yorkshire (YK12) pigs on day 12 of gestation. Overall, a total of 22,108 circRNAs were identified. Of these, 4051 circRNAs were specific to EH12 and 5889 circRNAs were specific to YK12, indicating a high level of breed specificity. Further analysis showed that there were 641 significant differentially expressed circRNAs (SDEcircRNAs) in EH12 compared with YK12 (FDR < 0.05). Functional enrichment of differential circRNA host genes revealed many pathways and genes associated with reproduction and regulation of embryo development. Network analysis of circRNA-miRNA interactions further supported the idea that circRNAs act as sponges for miRNAs to regulate gene expression. The prediction of differential circRNA binding proteins further explored the potential regulatory pathways of circRNAs. Analysis of SDEcircRNAs suggested a possible reason for the difference in embryo survival between the two breeds at the peri-implantation stage. CONCLUSIONS: Together, these data suggest that circRNAs are abundantly expressed in the endometrium during the peri-implantation period in pigs and are important regulators of related genes. The results of this study will help to further understand the differences in molecular pathways between the two breeds during the critical implantation period of pregnancy, and will help to provide insight into the molecular mechanisms that contribute to the establishment of pregnancy and embryo loss in pigs.


Asunto(s)
MicroARNs , ARN Circular , Embarazo , Femenino , Porcinos/genética , Animales , ARN Circular/genética , ARN Circular/metabolismo , Implantación del Embrión/genética , MicroARNs/genética , MicroARNs/metabolismo , Endometrio/metabolismo , Reproducción , Redes Reguladoras de Genes , Perfilación de la Expresión Génica/métodos
8.
Transgenic Res ; 32(1-2): 109-119, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36809403

RESUMEN

Novel transgenic (TG) pigs co-expressing three microbial enzymes, ß-glucanase, xylanase, and phytase, in their salivary glands were previously generated, which exhibited reduced phosphorus and nitrogen emissions and improved growth performances. In the present study, we attempted to explore the age-related change of the TG enzymic activity, the residual activity of the enzymes in the simulated gastrointestinal tract, and the effect of the transgenes on the digestion of nitrogen and phosphorus content in the fiber-rich, plant-based diets. Results showed that all the three enzymes were stably expressed over the growing and finishing periods in the F2 generation TG pigs. In simulated gastric juice, all the three enzymes exhibited excellent gastrointestinal environment adaptability. The apparent total tract digestibility of phosphorus was increased by 69.05% and 499.64%, while fecal phosphate outputs were decreased by 56.66% and 37.32%, in the TG pigs compared with the wild-type littermates fed with low non-starch polysaccharides diets and high fiber diets, respectively. Over half of available phosphorus and water-soluble phosphorus in fecal phosphorus were reduced. We also found the performance of phosphorus, calcium, and nitrogen retention rates were significantly improved, resulting in faster growth performance in TG pigs. The results indicate that TG pigs can effectively digest the high-fiber diets and exhibit good growth performance compared with wild type pigs.


Asunto(s)
6-Fitasa , Suplementos Dietéticos , Animales , Porcinos/genética , 6-Fitasa/genética , Digestión , Dieta , Tracto Gastrointestinal , Fósforo/farmacología , Glándulas Salivales , Alimentación Animal/análisis , Nitrógeno/farmacología , Dieta Vegetariana
9.
Genet Sel Evol ; 55(1): 72, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853325

RESUMEN

BACKGROUND: Although the accumulation of whole-genome sequencing (WGS) data has accelerated the identification of mutations underlying complex traits, its impact on the accuracy of genomic predictions is limited. Reliable genotyping data and pre-selected beneficial loci can be used to improve prediction accuracy. Previously, we reported a low-coverage sequencing genotyping method that yielded 11.3 million highly accurate single-nucleotide polymorphisms (SNPs) in pigs. Here, we introduce a method termed selective linkage disequilibrium pruning (SLDP), which refines the set of SNPs that show a large gain during prediction of complex traits using whole-genome SNP data. RESULTS: We used the SLDP method to identify and select markers among millions of SNPs based on genome-wide association study (GWAS) prior information. We evaluated the performance of SLDP with respect to three real traits and six simulated traits with varying genetic architectures using two representative models (genomic best linear unbiased prediction and BayesR) on samples from 3579 Duroc boars. SLDP was determined by testing 180 combinations of two core parameters (GWAS P-value thresholds and linkage disequilibrium r2). The parameters for each trait were optimized in the training population by five fold cross-validation and then tested in the validation population. Similar to previous GWAS prior-based methods, the performance of SLDP was mainly affected by the genetic architecture of the traits analyzed. Specifically, SLDP performed better for traits controlled by major quantitative trait loci (QTL) or a small number of quantitative trait nucleotides (QTN). Compared with two commercial SNP chips, genotyping-by-sequencing data, and an unselected whole-genome SNP panel, the SLDP strategy led to significant improvements in prediction accuracy, which ranged from 0.84 to 3.22% for real traits controlled by major or moderate QTL and from 1.23 to 11.47% for simulated traits controlled by a small number of QTN. CONCLUSIONS: The SLDP marker selection method can be incorporated into mainstream prediction models to yield accuracy improvements for traits with a relatively simple genetic architecture, however, it has no significant advantage for traits not controlled by major QTL. The main factors that affect its performance are the genetic architecture of traits and the reliability of GWAS prior information. Our findings can facilitate the application of WGS-based genomic selection.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genómica , Animales , Porcinos/genética , Masculino , Desequilibrio de Ligamiento , Genotipo , Estudio de Asociación del Genoma Completo/métodos , Reproducibilidad de los Resultados , Genómica/métodos , Fenotipo , Sitios de Carácter Cuantitativo , Polimorfismo de Nucleótido Simple
10.
J Nanobiotechnology ; 21(1): 79, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882792

RESUMEN

Most pregnancy losses worldwide are caused by implantation failure for which there is a lack of effective therapeutics. Extracellular vesicles are considered potential endogenous nanomedicines because of their unique biological functions. However, the limited supply of ULF-EVs prevents their development and application in infertility diseases such as implantation failure. In this study, pigs were used as a human biomedical model, and ULF-EVs were isolated from the uterine luminal. We comprehensively characterized the proteins enriched in ULF-EVs and revealed their biological functions in promoting embryo implantation. By exogenously supplying ULF-EVs, we demonstrated that ULF-EVs improve embryo implantation, suggesting that ULF-EVs are a potential nanomaterial to treat implantation failure. Furthermore, we identified that MEP1B is important in improving embryo implantation by promoting trophoblast cell proliferation and migration. These results indicated that ULF-EVs can be a potential nanomaterial to improve embryo implantation.


Asunto(s)
Vesículas Extracelulares , Nanoestructuras , Humanos , Femenino , Embarazo , Animales , Porcinos , Útero , Proliferación Celular , Implantación del Embrión
11.
BMC Genomics ; 23(1): 590, 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35964005

RESUMEN

BACKGROUND: Carcass traits are important in pig breeding programs for improving pork production. Understanding the genetic variants underlies complex phenotypes can help explain trait variation in pigs. In this study, we integrated a weighted single-step genome-wide association study (wssGWAS) and copy number variation (CNV) analyses to map genetic variations and genes associated with loin muscle area (LMA), loin muscle depth (LMD) and lean meat percentage (LMP) in Duroc pigs. RESULTS: Firstly, we performed a genome-wide analysis for CNV detection using GeneSeek Porcine SNP50 Bead chip data of 3770 pigs. A total of 11,100 CNVs were detected, which were aggregated by overlapping 695 CNV regions (CNVRs). Next, we investigated CNVs of pigs from the same population by whole-genome resequencing. A genome-wide analysis of 21 pigs revealed 23,856 CNVRs that were further divided into three categories (851 gain, 22,279 loss, and 726 mixed), which covered 190.8 Mb (~ 8.42%) of the pig autosomal genome. Further, the identified CNVRs were used to determine an overall validation rate of 68.5% for the CNV detection accuracy of chip data. CNVR association analyses identified one CNVR associated with LMA, one with LMD and eight with LMP after applying stringent Bonferroni correction. The wssGWAS identified eight, six and five regions explaining more than 1% of the additive genetic variance for LMA, LMD and LMP, respectively. The CNVR analyses and wssGWAS identified five common regions, of which three regions were associated with LMA and two with LMP. Four genes (DOK7, ARAP1, ELMO2 and SLC13A3) were highlighted as promising candidates according to their function. CONCLUSIONS: We determined an overall validation rate for the CNV detection accuracy of low-density chip data and constructed a genomic CNV map for Duroc pigs using resequencing, thereby proving a value genetic variation resource for pig genome research. Furthermore, our study utilized a composite genetic strategy for complex traits in pigs, which will contribute to the study for elucidating the genetic architecture that may be influenced and regulated by multiple forms of variations.


Asunto(s)
Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo , Animales , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , Porcinos/genética
12.
Biol Reprod ; 107(6): 1411-1424, 2022 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-36124705

RESUMEN

The pig is an excellent animal model for simulating human physiology and a major animal for meat production and xenotransplantation. Therefore, researching porcine embryonic development is crucial for studying human reproductive diseases and improving litter size in commercial pigs. Embryonic development in pigs occurs under a complex regulatory mechanism, in which epigenetic regulatory mechanisms play an essential role. Recently, studies on the effects of epigenetic modifications on embryonic development have been conducted at different developmental stages and in different cell lines. Increasing evidence suggests that a certain amount of crosstalk exists between different epigenetic modifications. This review describes four regulatory mechanisms of epigenetics involved in porcine embryonic development: DNA methylation, histone modification, non-coding RNA function, and chromatin accessibility, and explores the possible crosstalk between them.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Humanos , Embarazo , Femenino , Porcinos/genética , Animales , Desarrollo Embrionario/genética , Procesamiento Proteico-Postraduccional , Cromatina
13.
Cell Biol Int ; 46(1): 96-105, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34519117

RESUMEN

The formation of embryonic muscle fibers determines the amount of postnatal muscles and is regulated by a variety of signaling pathways and transcription factors. Previously, by using chromatin immunoprecipitation-sequencing and RNA-Seq techniques, we identified a large number of genes that are regulated by H3K27me3 in porcine embryonic skeletal muscles. Among these genes, we found that ITGB6 is regulated by H3K27me3. However, its function in muscle development is unknown. In this study, we first verified that ITGB6 was differentially regulated by H3K27me3 and that its expression levels were upregulated in porcine skeletal muscles at embryonic Days 33, 65, and 90. Then, we performed gain- or loss-of-function studies on porcine skeletal muscle satellite cells to study the role of ITGB6 in porcine skeletal muscle development. The proliferation of porcine skeletal muscle satellite cells was studied through real-time polymerase chain reaction, Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine staining, Western blot, and flow cytometry analyses. We found that the ITGB6 gene was regulated by H3K27me3 during muscle development and had an inhibitory effect on the proliferation of porcine skeletal muscle satellite cells.


Asunto(s)
Proliferación Celular , Cadenas beta de Integrinas/metabolismo , Desarrollo de Músculos , Células Satélite del Músculo Esquelético/metabolismo , Animales , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Cadenas beta de Integrinas/genética , Metilación , Procesamiento Proteico-Postraduccional , Transducción de Señal , Sus scrofa , Factores de Tiempo
14.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35457031

RESUMEN

Spontaneous abortion is a common pregnancy complication that negatively impacts women's health and commercial pig production. It has been demonstrated that non-coding RNA (ncRNA) is involved in SA by affecting cell proliferation, invasion, apoptosis, epithelial-mesenchymal transformation (EMT), migration, and immune response. Over the last decade, research on ncRNAs in SA has primarily concentrated on micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). In this review, we discuss recent ncRNA studies focused on the function and mechanism of miRNAs, lncRNAs, and circRNAs in regulating SA. Meanwhile, we suggest that a ceRNA regulatory network exists in the onset and development of SA. A deeper understanding of this network will accelerate the process of the quest for potential RNA markers for SA diagnosis and treatment.


Asunto(s)
Aborto Espontáneo , MicroARNs , ARN Largo no Codificante , Aborto Espontáneo/genética , Animales , Femenino , Redes Reguladoras de Genes , Humanos , MicroARNs/genética , Embarazo , ARN Circular/genética , ARN Largo no Codificante/genética , ARN no Traducido/genética , Porcinos
15.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36142269

RESUMEN

Black coat color in pigs is determined by the dominant E allele at the MC1R locus. Through comparing MC1R gene sequences between recessive e and dominant ED1 alleles, we identified four missense mutations that could affect MC1R protein function for eumelanin synthesis. With the aim of devising a genetic modification method for pig coat color manipulation, we mutated the e allele in the Duroc breed to the dominant ED1 allele using CRISPR-mediated homologous recombination for the four mutation substitutions at the MC1R locus. The MC1R-modified Duroc pigs generated using the allele replacement strategy displayed uniform black coat color across the body. A genotyping assay showed that the MC1R-modified Duroc pigs had a heterozygous ED1/e allele at the MC1R locus; in addition, the pigs remained in the Duroc genetic background. Our work offers a gene editing method for pig coat color manipulation, which could value the culture of new pig varieties meeting the needs of diversified market.


Asunto(s)
Edición Génica , Receptor de Melanocortina Tipo 1 , Alelos , Animales , Color del Cabello/genética , Mutación , Fenotipo , Receptor de Melanocortina Tipo 1/genética , Porcinos/genética
16.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35562992

RESUMEN

N6-methyladenosine (m6A) is the most common modification in eukaryotic RNAs. Accumulating evidence shows m6A methylation plays vital roles in various biological processes, including muscle and fat differentiation. However, there is a lack of research on lncRNAs' m6A modification in regulating pig muscle-fiber-type conversion. In this study, we identified novel and differentially expressed lncRNAs in oxidative and glycolytic skeletal muscles through RNA-seq, and further reported the m6A-methylation patterns of lncRNAs via MeRIP-seq. We found that most lncRNAs have one m6A peak, and the m6A peaks were preferentially enriched in the last exon of the lncRNAs. Interestingly, we found that lncRNAs' m6A levels were positively correlated with their expression homeostasis and levels. Furthermore, we performed conjoint analysis of MeRIP-seq and RNA-seq data and obtained 305 differentially expressed and differentially m6A-modified lncRNAs (dme-lncRNAs). Through QTL enrichment analysis of dme-lncRNAs and PPI analysis for their cis-genes, we finally identified seven key m6A-modified lncRNAs that may play a potential role in muscle-fiber-type conversion. Notably, inhibition of one of the key lncRNAs, MSTRG.14200.1, delayed satellite cell differentiation and stimulated fast-to-slow muscle-fiber conversion. Our study comprehensively analyzed m6A modifications on lncRNAs in oxidative and glycolytic skeletal muscles and provided new targets for the study of pig muscle-fiber-type conversion.


Asunto(s)
ARN Largo no Codificante , Animales , Metilación , Músculo Esquelético/metabolismo , Estrés Oxidativo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , RNA-Seq , Porcinos
17.
Int J Mol Sci ; 23(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35897733

RESUMEN

Litter size is an important indicator to measure the production capacity of commercial pigs. Spontaneous embryo loss is an essential factor in determining sow litter size. In early pregnancy, spontaneous embryo loss in porcine is as high as 20-30% during embryo implantation. However, the specific molecular mechanism underlying spontaneous embryo loss at the end of embryo implantation remains unknown. Therefore, we comprehensively used small RNA sequencing technology, bioinformatics analysis, and molecular experiments to determine the microRNA (miRNA) expression profile in the healthy and arresting embryo implantation site of porcine endometrium on day of gestation (DG) 28. A total of 464 miRNAs were identified in arresting endometrium (AE) and healthy endometrium (HE), and 139 differentially expressed miRNAs (DEMs) were screened. We combined the mRNA sequencing dataset from the SRA database to predict the target genes of these miRNAs. A quantitative real-time PCR assay identified the expression levels of miRNAs and mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed on differentially expressed target genes of DEMs, mainly enriched in epithelial development and amino acids metabolism-related pathways. We performed fluorescence in situ hybridization (FISH) and the dual-luciferase report gene assay to confirm miRNA and predicted target gene binding. miR-205 may inhibit its expression by combining 3'-untranslated regions (3' UTR) of tubulointerstitial nephritis antigen-like 1 (TINAGL1). The resulting inhibition of angiogenesis in the maternal endometrium ultimately leads to the formation of arresting embryos during the implantation period. This study provides a reference for the effect of miRNA on the successful implantation of pig embryos in early gestation.


Asunto(s)
Pérdida del Embrión , MicroARNs , Regiones no Traducidas 3' , Animales , Implantación del Embrión/genética , Pérdida del Embrión/genética , Endometrio/metabolismo , Femenino , Humanos , Hibridación Fluorescente in Situ , MicroARNs/genética , MicroARNs/metabolismo , Embarazo , Porcinos
18.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498896

RESUMEN

The technique of cloning has wide applications in animal husbandry and human biomedicine. However, the very low developmental efficiency of cloned embryos limits the application of cloning. Ectopic XIST-expression-induced abnormal X chromosome inactivation (XCI) is a primary cause of the low developmental competence of cloned mouse and pig embryos. Knockout or knockdown of XIST improves cloning efficiency in both pigs and mice. The transcription factor Yin yang 1(YY1) plays a critical role in XCI by triggering the transcription of X-inactive specific transcript (XIST) and facilitating the localization of XIST RNA on the X chromosome. This study aimed to investigate whether RNA interference to suppress the expression of YY1 can inhibit erroneous XIST expression, rescue abnormal XCI, and improve the developmental ability of cloned pig embryos. The results showed that YY1 binds to the 5' regulatory region of the porcine XIST gene in pig cells. The microinjection of YY1 siRNA into cloned pig embryos reduced the transcript abundance of XIST and upregulated the mRNA level of X-linked genes at the 4-cell and blastocyst stages. The siRNA-mediated knockdown of YY1 altered the transcriptome and enhanced the in vitro and in vivo developmental efficiency of cloned porcine embryos. These results suggested that YY1 participates in regulating XIST expression and XCI in cloned pig embryos and that the suppression of YY1 expression can increase the developmental rate of cloned pig embryos. The present study established a new method for improving the efficiency of pig cloning.


Asunto(s)
Desarrollo Embrionario , ARN Largo no Codificante , Animales , Blastocisto/metabolismo , Clonación de Organismos/métodos , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/metabolismo , Porcinos , Inactivación del Cromosoma X , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
19.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36555617

RESUMEN

The technique of pig cloning holds great promise for the livestock industry, life science, and biomedicine. However, the prenatal death rate of cloned pig embryos is extremely high, resulting in a very low cloning efficiency. This limits the development and application of pig cloning. In this study, we utilized embryo biopsy combined with microproteomics to identify potential factors causing the developmental arrest in cloned pig embryos. We verified the roles of two potential regulators, PDCD6 and PLK1, in cloned pig embryo development. We found that siRNA-mediated knockdown of PDCD6 reduced mRNA and protein expression levels of the pro-apoptotic gene, CASP3, in cloned pig embryos. PDCD6 knockdown also increased the cleavage rate and blastocyst rate of cloned porcine embryos. Overexpression of PLK1 via mRNA microinjection also improved the cleavage rate of cloned pig embryos. This study provided a new strategy to identify key factors responsible for the developmental defects in cloned pig embryos. It also helped establish new methods to improve pig cloning efficiency, specifically by correcting the expression pattern of PDCD6 and PLK1 in cloned pig embryos.


Asunto(s)
Clonación de Organismos , Técnicas de Transferencia Nuclear , Embarazo , Femenino , Animales , Porcinos , Clonación de Organismos/métodos , Embrión de Mamíferos , Blastocisto/metabolismo , Desarrollo Embrionario/genética , Biopsia , ARN Mensajero/metabolismo
20.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36555776

RESUMEN

Embryo implantation, the pivotal stage of gestation, is fundamentally dependent on synchronous embryonic development and uterine receptivity. In the early gestation period, the uterus and conceptus secrete growth factors, cytokines, and hormones to promote implantation. Circulating exosomal miRNAs are potential indicators of normal or complicated gestation. Our previous study revealed that pregnant sows' serum exosomes had upregulated miR-92b-3p expression compared to non-pregnant sows, and that the expression level progressively increased during early gestation. The present study's findings indicate that, compared to the ninth day of the estrous cycle (C9), pregnant sows had upregulated miR-92b-3p expression in the endometrium and embryos during the implantation stage ranging from day 9 to day 15 of gestation. Additionally, our results demonstrate that miR-92b-3p promotes the proliferation and migration of Porcine Trophoblast Cells (PTr2). Dual-Luciferase Reporter (DLR) gene assay, real-time fluorescent quantitative PCR (RT-qPCR), and Western blotting (WB) confirmed the bioinformatics prediction that phosphofructokinase-M (PFKM) serves as a target gene of miR-92b-3p. Notably, interference of PFKM gene expression markedly promoted PTr2 proliferation and migration. Furthermore, mice with downregulated uterine miR-92b-3p expression had smaller rates of successful embryo implantation. In summary, miR-92b-3p putatively modulates embryo implantation by promoting PTr2 proliferation and migration via its target gene PFKM.


Asunto(s)
MicroARNs , Trofoblastos , Ratones , Animales , Femenino , Porcinos , Trofoblastos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA