RESUMEN
The damage threshold of an Au-coated flat mirror, one of the reflective optics installed on the FEL-2 beamline of the Dalian Coherent Light Source, China, upon far-UV free-electron laser irradiation is evaluated. The surface of the coating is characterized by profilometer and optical microscope. A theoretical approach of the phenomenon is also presented, by application of conventional single-pulse damage threshold calculations, a one-dimensional thermal diffusion model, as well as finite-element analysis with ANSYS.
RESUMEN
The creation of inclusion complexes with "Saturn-like" geometries has attracted increasing attention for supramolecular systems, but expansion of the concept to nanoscale colloidal systems remains a challenge. Here, we report a strategy to assemble toroidal polyisoprene-b-poly(2-vinylpyridine) (PI-b-P2VP) block copolymer micelles with a PI core and a P2VP corona and inorganic (e.g., silica) nanoparticles of variable shape and dimensions into "Saturn-like" constructs with high fidelity and yield. The precise nesting of the nanoparticles between the toroidal building units is realized by virtue of hydrogen bonding and self-adaptive expansion of the flexible toroidal units enabled by a flexible, low Tg PI core. Once the toroidal units are cross-linked, the self-adaptive feature is lost and coassembly yields instead out-of-cavity bound nanoparticles. "Saturn-like" assemblies can also be formed along silica nanosphere-decorated cylindrical micelles or, alternatively, at the hydroxyl-functionalized termini of cylindrical micelles to yield colloidal [3]rotaxanes.
RESUMEN
Light propagation in turbulent media is conventionally studied with the help of the spatio-temporal power spectra of the refractive index fluctuations. In particular, for natural water turbulence several models for the spatial power spectra have been developed based on the classic, Kolmogorov postulates. However, as currently widely accepted, non-Kolmogorov turbulent regime is also common in the stratified flow fields, as suggested by recent developments in atmospheric optics. Until now all the models developed for the non-Kolmogorov optical turbulence were pertinent to atmospheric research and, hence, involved only one advected scalar, e.g., temperature. We generalize the oceanic spatial power spectrum, based on two advected scalars, temperature and salinity concentration, to the non-Kolmogorov turbulence regime, with the help of the so-called "Upper-Bound Limitation" and by adopting the concept of spectral correlation of two advected scalars. The proposed power spectrum can handle general non-Kolmogorov, anisotropic turbulence but reduces to Kolmogorov, isotropic case if the power law exponents of temperature and salinity are set to 11/3 and anisotropy coefficient is set to unity. To show the application of the new spectrum, we derive the expression for the second-order mutual coherence function of a spherical wave and examine its coherence radius (in both scalar and vector forms) to characterize the turbulent disturbance. Our numerical calculations show that the statistics of the spherical wave vary substantially with temperature and salinity non-Kolmogorov power law exponents and temperature-salinity spectral correlation coefficient. The introduced spectrum is envisioned to become of significance for theoretical analysis and experimental measurements of non-classic natural water double-diffusion turbulent regimes.
RESUMEN
Flow reactors are appealing alternatives to conventional batch reactors for heterogeneous catalysis. However, it remains a key challenge to firmly immobilize the catalysts in a facile and flexible manner and to simultaneously maintain a high catalytic efficiency and throughput. Herein, we introduce a dense cylindrical micelle brush support in glass capillary flow reactors through a living crystallization-driven self-assembly process initiated by pre-immobilized short micelle seeds. The active hairy corona of these micellar brushes allows the flexible decoration of a diverse array of nanocatalysts, either through a direct capture process or an inâ situ growth method. The resulting flow reactors reveal excellent catalytic efficiency for a broad range of frequently utilized transformations, including organic reductions, Suzuki couplings, photolytic degradations, and multistep cascade reactions, and the system was both recyclable and durable. Significantly, this approach is readily applicable to long capillaries, which enables the construction of flow reactors with remarkably higher throughput.
RESUMEN
Light influenced by the turbulent ocean can be fully characterized with the help of the power spectrum of the water's refractive index fluctuations, resulting from the combined effect of two scalars, temperature and salinity concentration advected by the velocity field. The Nikishovs' model [ Fluid Mech. Res.27, 8298 (2000)] frequently used in the analysis of light evolution through the turbulent ocean channels is the linear combination of the temperature spectrum, the salinity spectrum and their co-spectrum, each being described by an approximate expression developed by Hill [ J. Fluid Mech.88, 541562 (1978)] in the first of his four suggested models. The fourth of the Hill's models provides much more precise power spectrum than the first one expressed via a non-linear differential equation that does not have a closed-form solution. We develop an accurate analytic approximation to the fourth Hill's model valid for Prandtl/Schmidt numbers in the interval [3, 3000] and use it for the development of a more precise oceanic power spectrum. To illustrate the advantage of our model, we include numerical examples relating to the spherical wave scintillation index evolving in the underwater turbulent channels with different average temperatures, and, hence, different Prandtl numbers for temperature and different Schmidt numbers for salinity. Since our model is valid for a large range of Prandtl number (or/and Schmidt number), it can be readily adjusted to oceanic waters with seasonal or extreme average temperature and/or salinity or any other turbulent fluid with one or several advected quantities.
RESUMEN
Controlled self-assembly of colloidal particles into predetermined organization facilitates the bottom-up manufacture of artificial materials with designated hierarchies and synergistically integrated functionalities. However, it remains a major challenge to assemble individual nanoparticles with minimal building instructions in a programmable fashion due to the lack of directional interactions. Here, we develop a general paradigm for controlled co-assembly of soft block copolymer micelles and simple unvarnished hard nanoparticles through variable noncovalent interactions, including hydrogen bonding and coordination interactions. Upon association, the hairy micelle corona binds with the hard nanoparticles with a specific valence depending exactly on their relative size and feeding ratio. This permits the integration of block copolymer micelles with a diverse array of hard nanoparticles with tunable chemistry into multidimensional colloidal molecules and polymers. Secondary co-assembly of the resulting colloidal molecules further leads to the formation of more complex hierarchical colloidal superstructures. Notably, such colloidal assembly is processible on surface either through initiating the alternating co-assembly from a micelle immobilized on a substrate or directly grafting a colloidal oligomer onto the micellar anchor.
RESUMEN
The use of crystallization as a tool to control the self-assembly of polymeric and molecular amphiphiles in solution is attracting growing attention for the creation of non-spherical nanoparticles and more complex, hierarchical assemblies. In particular, the seeded growth method termed living crystallization-driven self-assembly (CDSA) has been established as an ambient temperature and potentially scalable platform for the preparation of low dispersity samples of core-shell fiber-like or platelet micellar nanoparticles. Significantly, this method permits predictable control of size, and access to branched and segmented structures where functionality is spatially-defined. Living CDSA operates under kinetic control and shows many analogies with living chain-growth polymerizations of molecular organic monomers that afford well-defined covalent polymers of controlled length except that it covers a much longer length scale (ca. 20 nm to 10 µm). The method has been applied to a rapidly expanding range of crystallizable polymeric amphiphiles, which includes block copolymers and charge-capped homopolymers, to form assemblies with crystalline cores and solvated coronas. Living CDSA seeded growth methods have also been transposed to a wide variety of π-stacking and hydrogen-bonding molecular species that form supramolecular polymers in processes termed "living supramolecular polymerizations". In this article we outline the main features of the living CDSA method and then survey the promising emerging applications for the resulting nanoparticles in fields such as nanomedicine, colloid stabilization, catalysis, optoelectronics, information storage, and surface functionalization.
RESUMEN
Anisotropic particles have attracted significant attention due to their alluring features that distinguish them from isotropic particles. One of the most appealing strategies for the synthesis of anisotropic particles is the emulsion-guided method. However, morphological control and the understanding of formation mechanisms have remained a major challenge. Based on a novel mechanism, here, a facile one-pot emulsion-templating method for the tunable construction of anisotropic polymeric particles (APPs) with different defined structures is reported. Three types of monocomponent APPs with new morphologies and sizes in the range of 240-650 nm, including Janus mushroom-like mesoporous poly(m-phenylenediamine) (PmPD) particles, wheel-shaped particles, and acorn-like PmPD particles, are obtained by controlling the average size of the oil droplets in the emulsion. Furthermore, the APPs demonstrate the ability for conversion to nitrogen-doped anisotropic carbon particles (ACPs) by pyrolysis at 800 °C under a N2 atmosphere, thereby inheriting their structures. These novel ACPs show appreciable potential as metal-free electrocatalysts for use in oxygen reduction reactions. Compared to their isotropic counterpart, these ACPs exhibit remarkable advantages such as enhanced specific surface area and pore volume, reduced stacking density, and easy fabrication of continuous and uniform membrane electrodes.
RESUMEN
The creation of nanostructures with precise chemistries on material surfaces is of importance in a wide variety of areas such as lithography, superhydrophobicity, and cell adhesion. We describe a platform for surface functionalization that involves the fabrication of cylindrical micellar brushes on a silicon wafer through seeded growth of crystallizable block copolymers at the termini of immobilized, surface-confined crystallite seeds. The density, length, and coronal chemistry of the micellar brushes can be precisely tuned, and post-growth decoration with nanoparticles enables applications in catalysis and antibacterial surface modification. The micellar brushes can also be grown on ultrathin two-dimensional materials such as graphene oxide nanosheets and further assembled into a membrane for the separation of oil-in-water emulsions and gold nanoparticles.
RESUMEN
Materials with controlled porosity play a prominent role in industrial and domestic applications. Although a rich array of methods has been developed to tune the pore size over a broad range (from <1 nm to >1 µm), the fabrication of functional materials with a fully open porous structure with sub-100 nm pore size has remained a significant challenge. Herein, we report the hierarchical assembly of block copolymer toroidal micelles with an intrinsic cavity into multidimensional nanoporous superstructures (pore size 85-90 nm) by modulation of interparticle interactions. The toroids aggregate into oligo-supermicelles or 2D hexagonal arrays through van der Waals interactions upon drying on a substrate, while synergistic hydrogen bonding interactions further promote the formation of 3D nanoporous superstructures directly in solution. Thus, toroidal micelles can be manipulated as a type of distinctive building block to construct nanoporous materials.
RESUMEN
In multifrequency atomic force microscopy (AFM), probe's characteristic of assigning resonance frequencies to integer harmonics results in a remarkable improvement of detection sensitivity at specific harmonic components. The selection criterion of harmonic order is based on its amplitude's sensitivity on material properties, e.g., elasticity. Previous studies on designing harmonic probe are unable to provide a large design capability along with maintaining the structural integrity. Herein, we propose a harmonic probe with step cross section, in which it has variable width in top and bottom steps, while the middle step in cross section is kept constant. Higher order resonance frequencies are tailored to be integer times of fundamental resonance frequency. The probe design is implemented within a structural optimization framework. The optimally designed probe is micromachined using focused ion beam milling technique, and then measured with an AFM. The measurement results agree well with our resonance frequency assignment requirement.