Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Invest New Drugs ; 32(5): 825-37, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24919854

RESUMEN

The G1 restriction point is critical for regulating the cell cycle and is controlled by the Rb pathway (CDK4/6-cyclin D1-Rb-p16/ink4a). This pathway is important because of its inactivation in a majority of human tumors. Transition through the restriction point requires phosphorylation of retinoblastoma protein (Rb) by CDK4/6, which are highly validated cancer drug targets. We present the identification and characterization of a potent CDK4/6 inhibitor, LY2835219. LY2835219 inhibits CDK4 and CDK6 with low nanomolar potency, inhibits Rb phosphorylation resulting in a G1 arrest and inhibition of proliferation, and its activity is specific for Rb-proficient cells. In vivo target inhibition studies show LY2835219 is a potent inhibitor of Rb phosphorylation, induces a complete cell cycle arrest and suppresses expression of several Rb-E2F-regulated proteins 24 hours after a single dose. Oral administration of LY2835219 inhibits tumor growth in human tumor xenografts representing different histologies in tumor-bearing mice. LY2835219 is effective and well tolerated when administered up to 56 days in immunodeficient mice without significant loss of body weight or tumor outgrowth. In calu-6 xenografts, LY2835219 in combination with gemcitabine enhanced in vivo antitumor activity without a G1 cell cycle arrest, but was associated with a reduction of ribonucleotide reductase expression. These results suggest LY2835219 may be used alone or in combination with standard-of-care cytotoxic therapy. In summary, we have identified a potent, orally active small-molecule inhibitor of CDK4/6 that is active in xenograft tumors. LY2835219 is currently in clinical development.


Asunto(s)
Aminopiridinas/farmacología , Antineoplásicos/farmacología , Bencimidazoles/farmacología , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Aminopiridinas/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Bencimidazoles/uso terapéutico , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Quimioterapia Combinada , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteína de Retinoblastoma/antagonistas & inhibidores , Proteína de Retinoblastoma/metabolismo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
2.
Mol Cancer Ther ; 19(2): 325-336, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31744895

RESUMEN

The ERK pathway is critical in oncogenesis; aberrations in components of this pathway are common in approximately 30% of human cancers. ERK1/2 (ERK) regulates cell proliferation, differentiation, and survival and is the terminal node of the pathway. BRAF- and MEK-targeted therapies are effective in BRAF V600E/K metastatic melanoma and lung cancers; however, responses are short-lived due to emergence of resistance. Reactivation of ERK signaling is central to the mechanisms of acquired resistance. Therefore, ERK inhibition provides an opportunity to overcome resistance and leads to improved efficacy. In addition, KRAS-mutant cancers remain an unmet medical need in which ERK inhibitors may provide treatment options alone or in combination with other agents. Here, we report identification and activity of LY3214996, a potent, selective, ATP-competitive ERK inhibitor. LY3214996 treatment inhibited the pharmacodynamic biomarker, phospho-p90RSK1, in cells and tumors, and correlated with LY3214996 exposures and antitumor activities. In in vitro cell proliferation assays, sensitivity to LY3214996 correlated with ERK pathway aberrations. LY3214996 showed dose-dependent tumor growth inhibition and regression in xenograft models harboring ERK pathway alterations. Importantly, more than 50% target inhibition for up to 8 to 16 hours was sufficient for significant tumor growth inhibition as single agent in BRAF- and KRAS-mutant models. LY3214996 also exhibited synergistic combination benefit with a pan-RAF inhibitor in a KRAS-mutant colorectal cancer xenograft model. Furthermore, LY3214996 demonstrated antitumor activity in BRAF-mutant models with acquired resistance in vitro and in vivo. Based on these preclinical data, LY3214996 has advanced to an ongoing phase I clinical trial (NCT02857270).


Asunto(s)
Neoplasias/tratamiento farmacológico , Medicina de Precisión , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Desnudos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
3.
Clin Cancer Res ; 20(14): 3763-74, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24850847

RESUMEN

PURPOSE: Selective inhibition of cyclin-dependent kinases 4 and 6 (CDK4/6) represents a promising therapeutic strategy. However, despite documented evidence of clinical activity, limited information is available on the optimal dosing strategy of CDK4/6 inhibitors. Here, we present an integrated semi-mechanistic pharmacokinetic/pharmacodynamic model to characterize the quantitative pharmacology of LY2835219, a CDK4/6 inhibitor, in xenograft tumors. EXPERIMENTAL DESIGN: LY2835219 plasma concentrations were connected to CDK4/6 inhibition and cell-cycle arrest in colo-205 human colorectal xenografts by incorporating the biomarkers, phospho-(ser780)-Rb, topoisomerase II α, and phosphohistone H3, into a precursor-dependent transit compartment model. This biomarker model was then connected to tumor growth inhibition (TGI) by: (i) relating the rate of tumor growth to mitotic cell density, and (ii) incorporating a concentration-dependent mixed cytostatic/cytotoxic effect driving quiescence and cell death at high doses. Model validation was evaluated by predicting LY2835219-mediated antitumor effect in A375 human melanoma xenografts. RESULTS: The model successfully described LY2835219-mediated CDK4/6 inhibition, cell-cycle arrest, and TGI in colo-205, and was validated in A375. The model also demonstrated that a chronic dosing strategy achieving minimum steady-state trough plasma concentrations of 200 ng/mL is required to maintain durable cell-cycle arrest. Quiescence and cell death can be induced by further increasing LY2835219 plasma concentrations. CONCLUSIONS: Our model provides mechanistic insight into the quantitative pharmacology of LY2835219 and supports the therapeutic dose and chronic dosing strategy currently adopted in clinical studies.


Asunto(s)
Aminopiridinas/farmacocinética , Antineoplásicos/farmacocinética , Bencimidazoles/farmacocinética , Administración Oral , Aminopiridinas/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Bencimidazoles/uso terapéutico , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Humanos , Concentración 50 Inhibidora , Ratones Desnudos , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA