Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(24): 5220-5236.e16, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37944511

RESUMEN

The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.


Asunto(s)
Cromosomas Artificiales de Levadura , Genoma Fúngico , Saccharomyces cerevisiae , Secuencia de Bases , Cromosomas/genética , Saccharomyces cerevisiae/genética , Biología Sintética
2.
Cell ; 186(24): 5237-5253.e22, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37944512

RESUMEN

Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.


Asunto(s)
Cromosomas Artificiales de Levadura , Genoma Fúngico , Saccharomyces cerevisiae , Perfilación de la Expresión Génica , Proteómica , Saccharomyces cerevisiae/genética , Biología Sintética , ARN de Transferencia/genética , Cromosomas Artificiales de Levadura/genética
3.
FEMS Yeast Res ; 242024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38140959

RESUMEN

Pulcherrimin is an iron (III) chelate of pulcherriminic acid that plays a role in antagonistic microbial interactions, iron metabolism, and stress responses. Some bacteria and yeasts produce pulcherriminic acid, but so far, pulcherrimin could not be produced in Saccharomyces cerevisiae. Here, multiple integrations of the Metschnikowia pulcherrima PUL1 and PUL2 genes in the S. cerevisiae genome resulted in red colonies, which indicated pulcherrimin formation. The coloration correlated positively and significantly with the number of PUL1 and PUL2 genes. The presence of pulcherriminic acid was confirmed by mass spectrometry. In vitro competition assays with the plant pathogenic fungus Botrytis caroliana revealed inhibitory activity on conidiation by an engineered, strong pulcherrimin-producing S. cerevisiae strain. We demonstrate that the PUL1 and PUL2 genes from M. pulcherrima, in multiple copies, are sufficient to transfer pulcherrimin production to S. cerevisiae and represent the starting point for engineering and optimizing this biosynthetic pathway in the future.


Asunto(s)
Metschnikowia , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Botrytis/genética , Botrytis/metabolismo , Metschnikowia/genética , Metschnikowia/metabolismo , Hierro/metabolismo
4.
Faraday Discuss ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847587

RESUMEN

Genetic code expansion has emerged as a powerful tool in enzyme design and engineering, providing new insights into sophisticated catalytic mechanisms and enabling the development of enzymes with new catalytic functions. In this regard, the non-canonical histidine analogue Nδ-methylhistidine (MeHis) has proven especially versatile due to its ability to serve as a metal coordinating ligand or a catalytic nucleophile with a similar mode of reactivity to small molecule catalysts such as 4-dimethylaminopyridine (DMAP). Here we report the development of a highly efficient aminoacyl tRNA synthetase (G1PylRSMIFAF) for encoding MeHis into proteins, by transplanting five known active site mutations from Methanomethylophilus alvus (MaPylRS) into the single domain PylRS from Methanogenic archaeon ISO4-G1. In contrast to the high concentrations of MeHis (5-10 mM) needed with the Ma system, G1PylRSMIFAF can operate efficiently using MeHis concentrations of ∼0.1 mM, allowing more economical production of a range of MeHis-containing enzymes in high titres. Interestingly G1PylRSMIFAF is also a 'polyspecific' aminoacyl tRNA synthetase (aaRS), enabling incorporation of five different non-canonical amino acids (ncAAs) including 3-pyridylalanine and 2-fluorophenylalanine. This study provides an important step towards scalable production of engineered enzymes that contain non-canonical amino acids such as MeHis as key catalytic elements.

5.
Exp Cell Res ; 390(1): 111936, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32165165

RESUMEN

The ability to redesign and reconstruct a cell at whole-genome level provides new platforms for biological study. The international synthetic yeast genome project-Sc2.0, designed by interrogating knowledge amassed by the yeast community to date, exemplifies how a classical synthetic biology "design-build-test-learn" engineering cycle can effectively test hypotheses about various genome fundamentals. The genome reshuffling SCRaMbLE system implemented in synthetic yeast strains also provides unprecedented diversified resources for genotype-phenotype study and yeast metabolic engineering. Further development of genome synthesis technology will shed new lights on complex biological processes in higher eukaryotes.


Asunto(s)
Cromosomas Artificiales de Levadura/genética , Ingeniería Genética/métodos , Genoma Fúngico , Genómica/métodos , Saccharomyces cerevisiae
6.
Proc Natl Acad Sci U S A ; 114(8): E1470-E1479, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28174266

RESUMEN

As the use of synthetic biology both in industry and in academia grows, there is an increasing need to ensure biocontainment. There is growing interest in engineering bacterial- and yeast-based safeguard (SG) strains. First-generation SGs were based on metabolic auxotrophy; however, the risk of cross-feeding and the cost of growth-controlling nutrients led researchers to look for other avenues. Recent strategies include bacteria engineered to be dependent on nonnatural amino acids and yeast SG strains that have both transcriptional- and recombinational-based biocontainment. We describe improving yeast Saccharomyces cerevisiae-based transcriptional SG strains, which have near-WT fitness, the lowest possible escape rate, and nanomolar ligands controlling growth. We screened a library of essential genes, as well as the best-performing promoter and terminators, yielding the best SG strains in yeast. The best constructs were fine-tuned, resulting in two tightly controlled inducible systems. In addition, for potential use in the prevention of industrial espionage, we screened an array of possible "decoy molecules" that can be used to mask any proprietary supplement to the SG strain, with minimal effect on strain fitness.


Asunto(s)
Genoma/genética , Saccharomyces cerevisiae/genética , Genes Esenciales/genética , Ingeniería Metabólica/métodos , Regiones Promotoras Genéticas/genética , Biología Sintética/métodos , Regiones Terminadoras Genéticas/genética , Transcripción Genética/genética
7.
Biochemistry ; 58(11): 1492-1500, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30817136

RESUMEN

The field of synthetic biology is already beginning to realize its potential, with a wealth of examples showcasing the successful genetic engineering of microorganisms for the production of valuable compounds. The chassis Saccharomyces cerevisiae has been engineered to function as a microfactory for producing many of these economically and medically relevant compounds. However, strain construction and optimization to produce industrially relevant titers necessitate a wealth of underpinning biological knowledge alongside large investments of capital and time. Over the past decade, advances in DNA synthesis and editing tools have enabled multiplex genome engineering of yeast, permitting access to more complex modifications that could not have been easily generated in the past. These genome engineering efforts often result in large populations of strains with genetic diversity that can pose a significant challenge to screen individually via traditional methods such as mass spectrometry. The large number of samples generated would necessitate screening methods capable of analyzing all of the strains generated to maximize the explored genetic space. In this Perspective, we focus on recent innovations in multiplex genome engineering of S. cerevisiae, together with biosensors and high-throughput screening tools, such as droplet microfluidics, and their applications in accelerating chassis optimization.


Asunto(s)
Ingeniería de Proteínas/métodos , Proteínas de Saccharomyces cerevisiae/biosíntesis , Biología Sintética/métodos , Sistemas CRISPR-Cas , Ingeniería Genética/métodos , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Genome Res ; 26(1): 36-49, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26566658

RESUMEN

Synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) generates combinatorial genomic diversity through rearrangements at designed recombinase sites. We applied SCRaMbLE to yeast synthetic chromosome arm synIXR (43 recombinase sites) and then used a computational pipeline to infer or unscramble the sequence of recombinations that created the observed genomes. Deep sequencing of 64 synIXR SCRaMbLE strains revealed 156 deletions, 89 inversions, 94 duplications, and 55 additional complex rearrangements; several duplications are consistent with a double rolling circle mechanism. Every SCRaMbLE strain was unique, validating the capability of SCRaMbLE to explore a diverse space of genomes. Rearrangements occurred exclusively at designed loxPsym sites, with no significant evidence for ectopic rearrangements or mutations involving synthetic regions, the 99% nonsynthetic nuclear genome, or the mitochondrial genome. Deletion frequencies identified genes required for viability or fast growth. Replacement of 3' UTR by non-UTR sequence had surprisingly little effect on fitness. SCRaMbLE generates genome diversity in designated regions, reveals fitness constraints, and should scale to simultaneous evolution of multiple synthetic chromosomes.


Asunto(s)
Cromosomas/genética , Evolución Molecular Dirigida , Reordenamiento Génico , Genoma Fúngico , Duplicación Cromosómica , Inversión Cromosómica , ADN de Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Eliminación de Secuencia
9.
Metab Eng ; 49: 13-20, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30010058

RESUMEN

Scaffold proteins influence cellular signaling by orchestrating multiple enzymes, receptors or ion channels, and could be tailored to enhance the efficiency of biochemical reactions by positioning related enzymes physically together. However, the number of applicable domains remains small, and the construction of scaffold proteins with optimal domain ratio could be tedious and time-consuming. In this study, we outlined a modular design to quickly assemble scaffold proteins using protein interaction domains, which have been constructed into a standardized vector. We generated multiple protein interaction domains and ligands for making artificial scaffold proteins. At the same time, we developed a robust Golden-Gate-based molecular toolkit for the construction of artificial scaffold proteins, allowing a variance of domain types, number, and positions. The synthesized domain-ligand interaction was verified by yeast two-hybrid and split-GFP assays. Using synthetic scaffolds, we demonstrated an increase in the yield of two target products by 29% and 63% respectively. Moreover, we demonstrated that the synthetic scaffold could be applied to rewire the metabolic flux. Our system could be a useful tool for metabolic engineering and beyond.


Asunto(s)
Ingeniería Metabólica , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión , Saccharomyces cerevisiae , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
PLoS Biol ; 13(12): e1002310, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26633141

RESUMEN

Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. It consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual.


Asunto(s)
Cromatina/química , ADN/química , Ingeniería Genética/métodos , Modelos Genéticos , Simbolismo , Animales , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Diseño Asistido por Computadora , Conducta Cooperativa , ADN/metabolismo , Bases de Datos de Ácidos Nucleicos , Ingeniería Genética/normas , Ingeniería Genética/tendencias , Humanos , Internet , Motivos de Nucleótidos , Publicaciones , Secuencias Reguladoras de Ácidos Nucleicos , Programas Informáticos
11.
Proc Natl Acad Sci U S A ; 112(6): 1803-8, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25624482

RESUMEN

Biocontainment may be required in a wide variety of situations such as work with pathogens, field release applications of engineered organisms, and protection of intellectual properties. Here, we describe the control of growth of the brewer's yeast, Saccharomyces cerevisiae, using both transcriptional and recombinational "safeguard" control of essential gene function. Practical biocontainment strategies dependent on the presence of small molecules require them to be active at very low concentrations, rendering them inexpensive and difficult to detect. Histone genes were controlled by an inducible promoter and controlled by 30 nM estradiol. The stability of the engineered genes was separately regulated by the expression of a site-specific recombinase. The combined frequency of generating viable derivatives when both systems were active was below detection (<10(-10)), consistent with their orthogonal nature and the individual escape frequencies of <10(-6). Evaluation of escaper mutants suggests strategies for reducing their emergence. Transcript profiling and growth test suggest high fitness of safeguarded strains, an important characteristic for wide acceptance.


Asunto(s)
Biotecnología/métodos , Contención de Riesgos Biológicos/métodos , Genes Esenciales/genética , Ingeniería Genética/métodos , Organismos Modificados Genéticamente/genética , Saccharomyces cerevisiae/genética , Perfilación de la Expresión Génica , Mutación/genética , Recombinasas/metabolismo , Recombinación Genética/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Transcripción Genética/genética
12.
Chem Soc Rev ; 46(23): 7191-7207, 2017 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-29094136

RESUMEN

Following the discovery of the DNA double helix structure and the advancement of genome sequencing, we have entered a promising stage with regard to genome writing. Recently, a milestone breakthrough was achieved in the chemical synthesis of designer yeast chromosomes. Here, we review the systematic approaches to the de novo synthesis of designer eukaryotic chromosomes, with an emphasis on technologies and methodologies that enable design, building, testing and debugging. The achievement of chemically synthesized genomes with customized genetic features offers an opportunity to rebuild genome organization, remold biological functions and promote life evolution, which will be of great benefit for application in medicine and industrial manufacturing.


Asunto(s)
Cromosomas Fúngicos/química , Eucariontes/química
13.
Nucleic Acids Res ; 43(13): e88, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-25956650

RESUMEN

It is a routine task in metabolic engineering to introduce multicomponent pathways into a heterologous host for production of metabolites. However, this process sometimes may take weeks to months due to the lack of standardized genetic tools. Here, we present a method for the design and construction of biological parts based on the native genes and regulatory elements in Saccharomyces cerevisiae. We have developed highly efficient protocols (termed YeastFab Assembly) to synthesize these genetic elements as standardized biological parts, which can be used to assemble transcriptional units in a single-tube reaction. In addition, standardized characterization assays are developed using reporter constructs to calibrate the function of promoters. Furthermore, the assembled transcription units can be either assayed individually or applied to construct multi-gene metabolic pathways, which targets a genomic locus or a receiving plasmid effectively, through a simple in vitro reaction. Finally, using ß-carotene biosynthesis pathway as an example, we demonstrate that our method allows us not only to construct and test a metabolic pathway in several days, but also to optimize the production through combinatorial assembly of a pathway using hundreds of regulatory biological parts.


Asunto(s)
Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , beta Caroteno/biosíntesis
14.
Nucleic Acids Res ; 43(13): 6620-30, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-25956652

RESUMEN

We have developed a method for assembling genetic pathways for expression in Saccharomyces cerevisiae. Our pathway assembly method, called VEGAS (Versatile genetic assembly system), exploits the native capacity of S. cerevisiae to perform homologous recombination and efficiently join sequences with terminal homology. In the VEGAS workflow, terminal homology between adjacent pathway genes and the assembly vector is encoded by 'VEGAS adapter' (VA) sequences, which are orthogonal in sequence with respect to the yeast genome. Prior to pathway assembly by VEGAS in S. cerevisiae, each gene is assigned an appropriate pair of VAs and assembled using a previously described technique called yeast Golden Gate (yGG). Here we describe the application of yGG specifically to building transcription units for VEGAS assembly as well as the VEGAS methodology. We demonstrate the assembly of four-, five- and six-gene pathways by VEGAS to generate S. cerevisiae cells synthesizing ß-carotene and violacein. Moreover, we demonstrate the capacity of yGG coupled to VEGAS for combinatorial assembly.


Asunto(s)
Vías Biosintéticas/genética , Saccharomyces cerevisiae/genética , Genes Fúngicos , Vectores Genéticos , Recombinación Homóloga , Indoles/metabolismo , Reacción en Cadena de la Polimerasa , Biología Sintética/métodos , Transcripción Genética , beta Caroteno/biosíntesis
15.
Nucleic Acids Res ; 42(20): e154, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25200084

RESUMEN

Assembly of DNA 'parts' to create larger constructs is an essential enabling technique for bioengineering and synthetic biology. Here we describe a simple method, PaperClip, which allows flexible assembly of multiple DNA parts from currently existing libraries cloned in any vector. No restriction enzymes, mutagenesis of internal restriction sites, or reamplification to add end homology are required. Order of assembly is directed by double stranded oligonucleotides-'Clips'. Clips are formed by ligation of pairs of oligonucleotides corresponding to the ends of each part. PaperClip assembly can be performed by polymerase chain reaction or by cell extract-mediated recombination. Once multi-use Clips have been prepared, assembly of at least six DNA parts in any order can be accomplished with high efficiency within several hours.


Asunto(s)
ADN/química , Biblioteca de Genes , Biología Sintética/métodos , Escherichia coli/genética , Oligonucleótidos/química , Reacción en Cadena de la Polimerasa , Recombinación Genética
16.
Nucleic Acids Res ; 41(1): e25, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23042248

RESUMEN

Gene synthesis attempts to assemble user-defined DNA sequences with base-level precision. Verifying the sequences of construction intermediates and the final product of a gene synthesis project is a critical part of the workflow, yet one that has received the least attention. Sequence validation is equally important for other kinds of curated clone collections. Ensuring that the physical sequence of a clone matches its published sequence is a common quality control step performed at least once over the course of a research project. GenoREAD is a web-based application that breaks the sequence verification process into two steps: the assembly of sequencing reads and the alignment of the resulting contig with a reference sequence. GenoREAD can determine if a clone matches its reference sequence. Its sophisticated reporting features help identify and troubleshoot problems that arise during the sequence verification process. GenoREAD has been experimentally validated on thousands of gene-sized constructs from an ORFeome project, and on longer sequences including whole plasmids and synthetic chromosomes. Comparing GenoREAD results with those from manual analysis of the sequencing data demonstrates that GenoREAD tends to be conservative in its diagnostic. GenoREAD is available at www.genoread.org.


Asunto(s)
Genes Sintéticos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Mapeo Contig , Plásmidos/genética , Alineación de Secuencia , Interfaz Usuario-Computador
17.
Nat Commun ; 15(1): 1060, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316765

RESUMEN

Synthetic biology holds immense promise to tackle key problems in resource use, environmental remediation, and human health care. However, comprehensive safety measures are lacking to employ engineered microorganisms in open-environment applications. Genetically encoded biocontainment systems may solve this issue. Here, we describe such a system based on conditional stability of essential proteins. We used a destabilizing domain degron stabilized by estradiol addition (ERdd). We ERdd-tagged 775 essential genes and screened for strains with estradiol dependent growth. Three genes, SPC110, DIS3 and RRP46, were found to be particularly suitable targets. Respective strains showed no growth defect in the presence of estradiol and strong growth inhibition in its absence. SPC110-ERdd offered the most stringent containment, with an escape frequency of <5×10-7. Removal of its C-terminal domain decreased the escape frequency further to <10-8. Being based on conditional protein stability, the presented approach is mechanistically orthogonal to previously reported genetic biocontainment systems.


Asunto(s)
Ingeniería Genética , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Organismos Modificados Genéticamente/genética , Contención de Riesgos Biológicos , Biología Sintética , Estradiol/metabolismo
18.
Cell Rep Methods ; 4(4): 100761, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38653205

RESUMEN

The international Synthetic Yeast Project (Sc2.0) aims to construct the first synthetic designer eukaryote genome. Over the past few years, the Sc2.0 consortium has achieved several significant milestones by synthesizing and characterizing all 16 nuclear chromosomes of the yeast Saccharomyces cerevisiae, as well as a 17thde novo neochromosome containing all nuclear tRNA genes. In this commentary, we discuss the recent technological advances achieved in this project and provide a perspective on how they will impact the emerging field of synthetic genomics in the future.


Asunto(s)
Genoma Fúngico , Saccharomyces cerevisiae , Ingeniería Genética/métodos , Genoma Fúngico/genética , Genómica/métodos , Saccharomyces cerevisiae/genética , Biología Sintética/métodos
19.
Curr Opin Biotechnol ; 87: 103125, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547587

RESUMEN

High-throughput screening technologies have been lacking in comparison to the plethora of high-throughput genetic diversification techniques developed in biotechnology. This review explores the challenges and advancements in high-throughput screening for high-value natural products, focusing on the critical need to expand ligand targets for biosensors and increase the throughput of analytical techniques in screening microbial cell libraries for optimal strain performance. The engineering techniques to broaden the scope of ligands for biosensors, such as transcription factors, G protein-coupled receptors and riboswitches are discussed. On the other hand, integration of microfluidics with traditional analytical methods is explored, covering fluorescence-activated cell sorting, Raman-activated cell sorting and mass spectrometry, emphasising recent developments in maximising throughput.


Asunto(s)
Técnicas Biosensibles , Ensayos Analíticos de Alto Rendimiento , Técnicas Biosensibles/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Bibliotecas de Moléculas Pequeñas , Biotecnología/métodos , Productos Biológicos/metabolismo , Productos Biológicos/análisis
20.
Cell Rep ; 43(2): 113742, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38324449

RESUMEN

In eukaryotic genomes, rDNA generally resides as a highly repetitive and dynamic structure, making it difficult to study. Here, a synthetic rDNA array on chromosome III in budding yeast was constructed to serve as the sole source of rRNA. Utilizing the loxPsym site within each rDNA repeat and the Cre recombinase, we were able to reduce the copy number to as few as eight copies. Additionally, we constructed strains with two or three rDNA arrays and found that the presence of multiple arrays did not affect the formation of a single nucleolus. Although alteration of the position and number of rDNA arrays did impact the three-dimensional genome structure, the additional rDNA arrays had no deleterious influence on cell growth or transcriptomes. Overall, this study sheds light on the high plasticity of rDNA organization and opens up opportunities for future rDNA engineering.


Asunto(s)
Saccharomycetales , Saccharomycetales/genética , Ciclo Celular , Nucléolo Celular , Proliferación Celular , ADN Ribosómico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA