Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell Mol Life Sci ; 81(1): 228, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777955

RESUMEN

Diabetic cardiomyopathy (DCM) is a prevalent complication of type 2 diabetes (T2D). 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) is a glycolysis regulator. However, the potential effects of PFKFB3 in the DCM remain unclear. In comparison to db/m mice, PFKFB3 levels decreased in the hearts of db/db mice. Cardiac-specific PFKFB3 overexpression inhibited myocardial oxidative stress and cardiomyocyte apoptosis, suppressed mitochondrial fragmentation, and partly restored mitochondrial function in db/db mice. Moreover, PFKFB3 overexpression stimulated glycolysis. Interestingly, based on the inhibition of glycolysis, PFKFB3 overexpression still suppressed oxidative stress and apoptosis of cardiomyocytes in vitro, which indicated that PFKFB3 overexpression could alleviate DCM independent of glycolysis. Using mass spectrometry combined with co-immunoprecipitation, we identified optic atrophy 1 (OPA1) interacting with PFKFB3. In db/db mice, the knockdown of OPA1 receded the effects of PFKFB3 overexpression in alleviating cardiac remodeling and dysfunction. Mechanistically, PFKFB3 stabilized OPA1 expression by promoting E3 ligase NEDD4L-mediated atypical K6-linked polyubiquitination and thus prevented the degradation of OPA1 by the proteasomal pathway. Our study indicates that PFKFB3/OPA1 could be potential therapeutic targets for DCM.


Asunto(s)
Cardiomiopatías Diabéticas , GTP Fosfohidrolasas , Miocitos Cardíacos , Fosfofructoquinasa-2 , Ubiquitinación , Fosfofructoquinasa-2/metabolismo , Fosfofructoquinasa-2/genética , Animales , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/genética , Ratones , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Masculino , Estrés Oxidativo , Apoptosis/genética , Miocardio/metabolismo , Miocardio/patología , Ratones Endogámicos C57BL , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Glucólisis , Humanos , Estabilidad Proteica
2.
J Biol Chem ; 296: 100667, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33864813

RESUMEN

The epoxyeicosatrienoic acid (EET) exerts beneficial effects on insulin resistance and/or hypertension. EETs could be readily converted to less biological active diols by soluble epoxide hydrolase (sEH). However, whether sEH inhibition can ameliorate the comorbidities of insulin resistance and hypertension and the underlying mechanisms of this relationship are unclear. In this study, C57BL/6 mice were rendered hypertensive and insulin resistant through a high-fat and high-salt (HF-HS) diet. The sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), was used to treat mice (1 mg/kg/day) for 8 weeks, followed by analysis of metabolic parameters. The expression of sEH and the sodium-glucose cotransporter 2 (SGLT2) was markedly upregulated in the kidneys of mice fed an HF-HS diet. We found that TPPU administration increased kidney EET levels, improved insulin resistance, and reduced hypertension. Furthermore, TPPU treatment prevented upregulation of SGLT2 and the associated increased urine volume and the excretion of urine glucose and urine sodium. Importantly, TPPU alleviated renal inflammation. In vitro, human renal proximal tubule epithelial cells (HK-2 cells) were used to further investigate the underlying mechanism. We observed that 14,15-EET or sEH knockdown or inhibition prevented the upregulation of SGLT2 upon treatment with palmitic acid or NaCl by inhibiting the inhibitory kappa B kinase α/ß/NF-κB signaling pathway. In conclusion, sEH inhibition by TPPU alleviated insulin resistance and hypertension induced by an HF-HS diet in mice. The increased urine excretion of glucose and sodium was mediated by decreased renal SGLT2 expression because of inactivation of the inhibitory kappa B kinase α/ß/NF-κB-induced inflammatory response.


Asunto(s)
Epóxido Hidrolasas/antagonistas & inhibidores , Regulación de la Expresión Génica , Hipertensión/prevención & control , Resistencia a la Insulina , Riñón/metabolismo , Enfermedades Metabólicas/prevención & control , Transportador 2 de Sodio-Glucosa/metabolismo , Animales , Regulación hacia Abajo , Hipertensión/etiología , Hipertensión/metabolismo , Hipertensión/patología , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Masculino , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , Transportador 2 de Sodio-Glucosa/genética
3.
Pharmacol Res ; 183: 106367, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35882293

RESUMEN

Diabetic nephropathy (DN) is the most common cause of end-stage renal disease, and few treatment options that prevent the progressive loss of renal function are available. Studies have shown that dietary fiber intake improves kidney diseases and metabolism-related diseases, most likely through short-chain fatty acids (SCFAs). The present study aimed to examine the protective effects of inulin-type fructans (ITFs) on DN through 16 S rRNA gene sequencing, gas chromatographymass spectrometry (GCMS) analysis and fecal microbiota transplantation (FMT). The results showed that ITFs supplementation protected against kidney damage in db/db mice and regulated the composition of the gut microbiota. Antibiotic treatment and FMT experiments further demonstrated a key role of the gut microbiota in mediating the beneficial effects of ITFs. The ITFs treatment-induced changes in the gut microbiota led to an enrichment of SCFA-producing bacteria, especially the genera Akkermansia and Candidatus Saccharimonas, which increased the fecal and serum acetate concentrations. Subsequently, acetate supplementation improved glomerular damage and renal fibrosis by attenuating mitochondrial dysfunction and reducing toxic glucose metabolite levels. In conclusion, ITFs play a renoprotective role by modulating the gut microbiota and increasing acetate production. Furthermore, acetate mediates renal protection by regulating glucose metabolism, decreasing glycotoxic product levels and improving mitochondrial function.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Microbioma Gastrointestinal , Animales , Bacterias/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Ácidos Grasos Volátiles/metabolismo , Fructanos/farmacología , Fructanos/uso terapéutico , Inulina/metabolismo , Inulina/uso terapéutico , Ratones
4.
Am J Physiol Heart Circ Physiol ; 321(2): H353-H368, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34142887

RESUMEN

Arterial stiffness, a consequence of smoking, is an underlying risk factor of cardiovascular diseases. Epoxyeicosatrienoic acids (EETs), hydrolyzed by soluble epoxide hydrolase (sEH), have beneficial effects against vascular dysfunction. However, the role of sEH knockout in nicotine-induced arterial stiffness was not characterized. We hypothesized that sEH knockout could prevent nicotine-induced arterial stiffness. In the present study, Ephx2 (the gene encodes sEH enzyme) null (Ephx2-/-) mice and wild-type (WT) littermate mice were infused with or without nicotine and administered with or without nicotinamide [NAM, sirtuin-1 (SIRT1) inhibitor] simultaneously for 4 wk. Nicotine treatment increased sEH expression and activity in the aortas of WT mice. Nicotine infusion significantly induced vascular remodeling, arterial stiffness, and SIRT1 deactivation in WT mice, which was attenuated in Ephx2 knockout mice (Ephx2-/- mice) without NAM treatment. However, the arterial protective effects were gone in Ephx2-/- mice with NAM treatment. In vitro, 11,12-EET treatment attenuated nicotine-induced matrix metalloproteinase 2 (MMP2) upregulation via SIRT1-mediated yes-associated protein (YAP) deacetylation. In conclusion, sEH knockout attenuated nicotine-induced arterial stiffness and vascular remodeling via SIRT1-induced YAP deacetylation.NEW & NOTEWORTHY We presently show that sEH knockout repressed nicotine-induced arterial stiffness and extracellular matrix remodeling via SIRT1-induced YAP deacetylation, which highlights that sEH is a potential therapeutic target in smoking-induced arterial stiffness and vascular remodeling.


Asunto(s)
Aorta/efectos de los fármacos , Epóxido Hidrolasas/genética , Niacinamida/farmacología , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Sirtuina 1/metabolismo , Rigidez Vascular/efectos de los fármacos , Complejo Vitamínico B/farmacología , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacología , Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Aorta/metabolismo , Aorta/fisiopatología , Metaloproteinasa 2 de la Matriz/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/genética , Ratones , Ratones Noqueados , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/efectos de los fármacos , Rigidez Vascular/genética , Vasodilatadores/farmacología , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA