Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Radiol ; 79(6): e868-e877, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38548547

RESUMEN

AIM: Occurrence of anastomotic biliary stricture (AS) remains an essential issue following hepatobiliary surgeries, and percutaneous transhepatic cholangioscopy (PTCS) has great therapeutic significance in handling refractory AS for patients with altered gastrointestinal anatomy after cholangio-jejunostomy. This present study aimed to investigate feasibility of PTCS procedures in AS patients for therapeutic indications. MATERIALS AND METHODS: This study was a single-center, retrospective cohort study with a total number of 124 consecutive patients who received therapeutic PTCS due to AS. Clinical success rate, required number, and adverse events of therapeutic PTCS procedures as well as patients survival state were reviewed. RESULTS: These 124 patients previously underwent choledochojejunostomy or hepatico-jejunostomy, and there was post-surgical altered gastrointestinal anatomy. Overall, 366 therapeutic PTCS procedures were performed for these patients through applying rigid choledochoscope, and the median time of PTCS procedures was 3 (1-11). Among these patients, there were 34 cases (27.32%) accompanied by biliary strictures and 100 cases (80.65%) were also combined with biliary calculi. After therapeutic PTCS, most patients presented with relieved clinical manifestations and improved liver functions. The median time of follow-up was 26 months (2-86 months), and AS was successfully managed through PTCS procedures in 104 patients (83.87%). During the follow-up period, adverse events occurred in 81 cases (65.32%), most of which were tackled through supportive treatment. CONCLUSION: PTCS was a feasible, safe and effective therapeutic modality for refractory AS, which may be a promising alternative approach in clinical cases where the gastrointestinal anatomy was changed after cholangio-jejunostomy.


Asunto(s)
Anastomosis Quirúrgica , Colestasis , Humanos , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Adulto , Constricción Patológica/cirugía , Constricción Patológica/diagnóstico por imagen , Colestasis/cirugía , Colestasis/diagnóstico por imagen , Colestasis/etiología , Anastomosis Quirúrgica/efectos adversos , Estudios de Factibilidad , Endoscopía del Sistema Digestivo/métodos , Resultado del Tratamiento , Complicaciones Posoperatorias/diagnóstico por imagen
2.
Heliyon ; 10(4): e26078, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38384578

RESUMEN

Continuous planting is unavoidable in agricultural production, but continuous planting affects plant growth and physiological characteristics. In this study, we analyzed rhizosphere soil nutrients, physiological characteristics, hormone metabolome changes and their interactions of Casuarina equisetifolia (C. equisetifolia) with the increase of continuous planting number. The results found that C. equisetifolia root was significantly inhibited, the plant height was dwarfed and the biomass was significantly reduced as continuous planting number increased. Secondly, continuous planting caused a decrease in the rhizosphere soil nutrient transformation capacity, and a significant decrease in the total soil nutrient and available nutrient content. Analysis of physiological indexes showed that continuous planting resulted in a decrease in nitrogen, phosphorus, and potassium content, a decrease in the activity of physiological indexes of resistance, and a decrease in photosynthetic capacity of C. equisetifolia leaves. Hormone metabolome analysis showed that continuous planting critically affected the accumulation of five characteristic hormones in C. equisetifolia leaves, in which salicylic acid 2-O-ß-glucoside (SAG), 2-oxindole-3-acetic acid (OxIAA), trans-zeatin-O-glucoside (tZOG) and gibberellin A3 (GA3) content decreased significantly while abscisic acid (ABA) content increased significantly. In conclusion, continuous planting lowered the rhizosphere soil nutrient transformation capacity of C. equisetifolia, lowered the soil available nutrient content, inhibited their root growth, and hindered the nutrient uptake and transportation by the root, thus led to the decrease of the nutrient accumulation capacity in the leaves of C. equisetifolia, and the decrease of SAG, OxIAA, and tZOG, GA3 synthesis ability decreased, ABA accumulated in large quantities, C. equisetifolia resistance and photosynthesis ability decreased, and their growth was impeded. This study provides insights for the effective management of continuous planting in the cultivation of C. equisetifolia.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38299398

RESUMEN

BACKGROUND: IL-33/ST2 signaling plays crucial roles in the development and progression of various human malignancies. However, its significance in intrahepatic cholangiocarcinoma (ICC) still remains unclear. OBJECTIVE: This study aimed to investigate the expression of IL-33/ST2 signaling and its correlations with macrophage heterogeneity and ICC patients' clinicopathologic features. METHODS: The expression of different phenotype macrophage markers and IL-33/ST2 signalingrelated markers was detected. The correlation between L-33/ST2 signaling and different phenotype macrophage markers as well as ICC patients' clinicopathologic data was evaluated. RESULTS: Massive heterogeneous cancer cells and PAS-positive cells were observed in tumor tissues. CD68-positive cells accumulated in tumor tissues and expression of both M1 phenotype markers and M2 phenotype macrophage markers was higher in tumor samples than para-carcinoma samples. However, M2 phenotype macrophages represented the dominant macrophage population in ICC tissues. Plasma levels of IL-33, ST2, and MIF were evidently enhanced in ICC patients compared to healthy controls. IL-33/ST2 signaling-related markers exhibited a massive increase in tumor samples than para-carcinoma samples. IL-33 and ST2 expression in ICC tissues was positively associated with M1 and M2 phenotype macrophages. Plasma levels of IL-33, ST2, and MIF were correlated with the diameter of tumor lesions, lymph node metastasis, TNM stage, and tumor differentiation degree. Multivariate analysis demonstrated IL-33 expression to exhibit a correlation with the diameter of tumor lesions, lymph node metastasis, and TNM stage. Additionally, there was a relationship observed between ST2, MIF expression, and diameter of tumor lesions plus TNM stage. CONCLUSION: IL-33/ST2 signaling exhibited a positive relationship with macrophage heterogeneity in ICC tissues, and upregulated levels of IL-33, ST2, and MIF were associated with aggressive clinicopathologic characteristics. These findings may provide promising diagnostic biomarkers and potential therapeutic strategies for ICC patients targeting IL-33/ST2 signaling.

4.
Cancer Res ; 84(6): 827-840, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38241695

RESUMEN

N6-methyladenosine (m6A) RNA modification is the most common and conserved epigenetic modification in mRNA and has been shown to play important roles in cancer biology. As the m6A reader YTHDF1 has been reported to promote progression of hepatocellular carcinoma (HCC), it represents a potential therapeutic target. In this study, we evaluated the clinical significance of YTHDF1 using human HCC samples and found that YTHDF1 was significantly upregulated in HCCs with high stemness scores and was positively associated with recurrence and poor prognosis. Analysis of HCC spheroids revealed that YTHDF1 was highly expressed in liver cancer stem cells (CSC). Stem cell-specific conditional Ythdf1 knockin (CKI) mice treated with diethylnitrosamine showed elevated tumor burden as compared with wild-type mice. YTHDF1 promoted CSCs renewal and resistance to the multiple tyrosine kinase inhibitors lenvatinib and sorafenib in patient-derived organoids and HCC cell lines, which could be abolished by catalytically inactive mutant YTHDF1. Multiomic analysis, including RNA immunoprecipitation sequencing, m6A methylated RNA immunoprecipitation sequencing, ribosome profiling, and RNA sequencing identified NOTCH1 as a direct downstream of YTHDF1. YTHDF1 bound to m6A modified NOTCH1 mRNA to enhance its stability and translation, which led to increased NOTCH1 target genes expression. NOTCH1 overexpression rescued HCC stemness in YTHDF1-deficient cells in vitro and in vivo. Lipid nanoparticles targeting YTHDF1 significantly enhanced the efficacy of lenvatinib and sorafenib in HCC in vivo. Taken together, YTHDF1 drives HCC stemness and drug resistance through an YTHDF1-m6A-NOTCH1 epitranscriptomic axis, and YTHDF1 is a potential therapeutic target for treating HCC. SIGNIFICANCE: Inhibition of YTHDF1 expression suppresses stemness of hepatocellular carcinoma cells and enhances sensitivity to targeted therapies, indicating that targeting YTHDF1 may be a promising therapeutic strategy for liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Compuestos de Fenilurea , Quinolinas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Sorafenib , Resistencia a Antineoplásicos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Adenosina/farmacología , ARN Mensajero , ARN , Receptor Notch1/genética , Proteínas de Unión al ARN/genética
5.
Front Plant Sci ; 14: 1324184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38126014

RESUMEN

Casuarina equisetifolia (C. equisetifolia) is an economically important forest tree species, often cultivated in continuous monoculture as a coastal protection forest. Continuous planting has gradually affected growth and severely restricted the sustainable development of the C. equisetifolia industry. In this study, we analyzed the effects of continuous planting on C. equisetifolia growth and explored the rhizosphere soil microecological mechanism from a metagenomic perspective. The results showed that continuous planting resulted in dwarfing, shorter root length, and reduced C. equisetifolia seedling root system. Metagenomics analysis showed that 10 key characteristic microorganisms, mainly Actinoallomurus, Actinomadura, and Mycobacterium, were responsible for continuously planted C. equisetifolia trees. Quantitative analysis showed that the number of microorganisms in these three genera decreased significantly with the increase of continuous planting. Gene function analysis showed that continuous planting led to the weakening of the environmental information processing-signal transduction ability of soil characteristic microorganisms, and the decrease of C. equisetifolia trees against stress. Reduced capacity for metabolism, genetic information processing-replication and repair resulted in reduced microbial propagation and reduced microbial quantity in the rhizosphere soil of C. equisetifolia trees. Secondly, amino acid metabolism, carbohydrate metabolism, glycan biosynthesis and metabolism, lipid metabolism, metabolism of cofactors and vitamins were all significantly reduced, resulting in a decrease in the ability of the soil to synthesize and metabolize carbon and nitrogen. These reduced capacities further led to reduced soil microbial quantity, microbial carbon and nitrogen, microbial respiration intensity, reduced soil enzyme nutrient cycling and resistance-related enzyme activities, a significant reduction in available nutrient content of rhizosphere soils, a reduction in the ion exchange capacity, and an impediment to C. equisetifolia growth. This study provides an important basis for the management of continuously planted C. equisetifolia plantations.

6.
Front Plant Sci ; 14: 1288444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155858

RESUMEN

Continuous planting has a severe impact on the growth of Casuarina equisetifolia. In this study, the effects of three different long-term monocultures (one, two and three replanting) on the physicochemical indexes, microbial functional diversity, and soil metabolomics were analyzed in C. equisetifolia rhizosphere soil. The results showed that rhizosphere soil organic matter content, cation exchange capacity, total and available nitrogen, total and available phosphorus, and total and available potassium contents significantly decreased with the increasing number of continuous plantings. The evaluation of microbial functional diversity revealed a reduction in the number of soil microorganisms that rely on carbohydrates for carbon sources and an increase in soil microorganisms that used phenolic acid, carboxylic acid, fatty acid, and amines as carbon sources. Soil metabolomics analysis showed a significant decrease in soil carbohydrate content and a significant accumulation of autotoxic acid, amine, and lipid in the C. equisetifolia rhizosphere soil. Consequently, the growth of C. equisetifolia could hinder total nutrient content and their availability. Thus, valuable insights for managing the cultivation of C. equisetifolia and soil remediation were provided.

7.
Genet. mol. biol ; 33(2): 325-327, 2010. ilus, tab
Artículo en Inglés | LILACS | ID: lil-548810

RESUMEN

A triploid (2n = 3x = 36) rice plant was obtained by screening a twin seedling population in which each seed germinated to two or three sprouts that were then crossed with diploid plants. One diploid plant was chosen among the various F1 progenies and developed into an F2 population via self-pollination. Compared with the control variety Shanyou 63, this F2 population had a stable agronomical performance in field trials, as confirmed by the F-test. The stability of the F2 population was further substantiated by molecular analysis with simple sequence repeat markers. Specifically, of 160 markers assayed, 37 (covering all 12 chromosomes) were polymorphic between the parental lines. Testing the F1 hybrid individually with these markers showed that each PCR product had only a single band instead of two bands from each parent. The bands were identical to either maternal (23 markers) or paternal (eight markers) bands or distinct from both parents (six markers). The amplified bands of all 60 randomly selected F2 plants were uniform and identical to those of the F1 hybrid. These results suggest that the F1 plant is a non-segregating hybrid and that a stable F2 population was obtained. This novel system provides an efficient means for shortening the cycle of hybrid rice seed production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA