Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biol Rev Camb Philos Soc ; 99(4): 1298-1313, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38409953

RESUMEN

Hunting has a long tradition in human evolutionary history and remains a common leisure activity or an important source of food. Herein, we first briefly review the literature on the demographic consequences of hunting and associated analytical methods. We then address the question of potential selective hunting and its possible genetic/evolutionary consequences. Birds have historically been popular models for demographic studies, and the huge amount of census and ringing data accumulated over the last century has paved the way for research about the demographic effects of harvesting. By contrast, the literature on the evolutionary consequences of harvesting is dominated by studies on mammals (especially ungulates) and fish. In these taxa, individuals selected for harvest often have particular traits such as large body size or extravagant secondary sexual characters (e.g. antlers, horns, etc.). Our review shows that targeting individuals according to such genetically heritable traits can exert strong selective pressures and alter the evolutionary trajectory of populations for these or correlated traits. Studies focusing on the evolutionary consequences of hunting in birds are extremely rare, likely because birds within populations appear much more similar, and do not display individual differences to the same extent as many mammals and fishes. Nevertheless, even without conscious choice by hunters, there remains the potential for selection through hunting in birds, for example by genetically inherited traits such as personality or pace-of-life. We emphasise that because so many bird species experience high hunting pressure, the possible selective effect of harvest in birds and its evolutionary consequences deserves far more attention, and that hunting may be one major driver of bird evolutionary trajectories that should be carefully considered in wildlife management schemes.


Asunto(s)
Evolución Biológica , Aves , Animales , Aves/genética , Aves/fisiología , Caza , Animales Salvajes/genética
2.
Ecol Evol ; 12(4): e8835, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35475190

RESUMEN

Assessing trends in the relative abundance of populations is a key yet complex issue for management and conservation. This is a major aim of many large-scale censusing schemes such as the International Waterbird Count (IWC). However, owing to the lack of sampling strategy and standardization, such schemes likely suffer from biases due to spatial heterogeneity in sampling effort. Despite huge improvements of the statistical tools that allow tackling these statistical issues (e.g., GLMM, Bayesian inference), many conservationists still prefer to rely on stand-alone turn-key statistical tools, often violating the prerequisites put forward by the developers of these tools. Here, we propose a straightforward and flexible approach to tackle the typical statistical issues one can encounter when analyzing count data of monitoring schemes such as the IWC. We rely on IWC counts of the declining common pochard populations of the Northwest European flyway as a case study (period 2002-2012). To standardize the size of sampling units and mitigate spatial autocorrelation, we grouped sampling sites using a 75 × 75 km grid cells overlaid over the flyway of interest. Then, we used a hierarchical modeling approach, assessing population trends with random effects at two spatial scales (grid cells, and sites within grid cells) in order to derive spatialized values and to compute the average population trend at the whole flyway scale. Our approach allowed to tackle many statistical issues inherent to this type of analysis but often neglected, including spatial autocorrelation. Concerning the case study, our main findings are that: (1) the northwestern population of common pochards experienced a steep decline (4.9% per year over the 2002-2012 period); (2) the decline was more pronounced at high than low latitude (11.6% and 0.5% per year at 60° and 46° of latitude, respectively); and, (3) the decline was independent of the initial number of individuals in a given site (random across sites). Beyond the case study of the common pochard, our study provides a conceptual statistical framework for estimating and assessing potential drivers of population trends at various spatial scales.

3.
Ecol Evol ; 12(9): e9285, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36188522

RESUMEN

Selective hunting has various impacts that need to be considered for the conservation and management of harvested populations. The consequences of selective harvest have mostly been studied in trophy hunting and fishing, where selection of specific phenotypes is intentional. Recent studies, however, show that selection can also occur unintentionally. With at least 52 million birds harvested each year in Europe, it is particularly relevant to evaluate the selectivity of hunting on this taxon. Here, we considered 211,806 individuals belonging to 7 hunted bird species to study unintentional selectivity in harvest. Using linear mixed models, we compared morphological traits (mass, wing, and tarsus size) and body condition at the time of banding between birds that were subsequently recovered from hunting during the same year as their banding, and birds that were not recovered. We did not find any patterns showing systematic differences between recovery categories, among our model species, for the traits we studied. Moreover, when a difference existed between recovery categories, it was so small that its biological relevance can be challenged. Hunting of birds in Europe therefore does not show any form of strong selectivity on the morphological and physiological traits that we studied and should hence not lead to any change of these traits either by plastic or by evolutionary response.

4.
PLoS One ; 9(5): e96478, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24802936

RESUMEN

Partial migration is a pervasive albeit poorly studied phenomenon by which some individuals of a population migrate while others are residents. It has tremendous consequences on seasonal variations of population size/structure and therefore management. Using a multi-event capture-mark-recapture/recovery (CMR) approach, we assessed seasonal site occupancy, survival and site fidelity of a partially migratory diving duck, the Common pochard (Aythya ferina), in an area potentially including both local breeders and winter visitors. The modelling exercise indeed discriminated two different categories of individuals. First, locally breeding females which had a probability of being present in our study area during winter of 0.41. Females of this category were found to be more faithful to their breeding site than males (breeding site fidelity probabilities of 1 and 0.11, respectively). The second category of birds were winter visitors, which included adults of both sexes, whose probability of being present in the study area during the breeding season was nil, and young of both sexes with a 0.11 probability of being present in the area during the breeding season. All wintering individuals, among which there was virtually no locally breeding male, displayed a high fidelity to our study area from one winter to the next (0.41-0.43). Estimated annual survival rates differed according to age (adults 0.69, young 0.56). For both age classes mortality was higher during late winter/early spring than during summer/early winter. Our study is among the first to show how and under which conditions the multi-event approach can be employed for investigating complex movement patterns encountered in partial migrants, providing a convenient tool for overcoming state uncertainty. It also shows why studying patterns of probability of individual presence/movements in partial migrants is a key towards understanding seasonal variations in numbers.


Asunto(s)
Migración Animal/fisiología , Animales , Cruzamiento/métodos , Patos/fisiología , Femenino , Masculino , Dinámica Poblacional , Probabilidad , Estaciones del Año
5.
Mol Ecol ; 12(9): 2297-305, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12919469

RESUMEN

We investigated the association of habitat fragmentation with genetic structure of male black grouse Tetrao tetrix. Using 14 microsatellites, we compared the genetic differentiation of males among nine localities in continuous lowland habitats in Finland to the genetic differentiation among 14 localities in fragmented habitats in the Alps (France, Switzerland and Italy). In both areas, we found significant genetic differentiation. However, the average differentiation, measured as theta, was more than three times higher in the Alps than in Finland. The greater differentiation found in the Alps is probably due to the presence of mountain ridges rising above natural habitats of the species, which form barriers to gene flow, and to a higher influence of genetic drift resulting from lower effective sizes in highly fragmented habitats. The detection of isolation by distance in the Alps suggests that gene flow among populations does occur. The genetic variability measured as gene diversity HE and allelic richness A was lower in the Alps than in Finland. This could result from the higher fragmentation and/or from the fact that populations in the Alps are isolated from the main species range and have a lower effective size than in Finland. This study suggests that habitat fragmentation can affect genetic structure of avian species with relatively high dispersal propensities.


Asunto(s)
Aves/genética , Ambiente , Variación Genética , Genética de Población , Alelos , Animales , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Europa (Continente) , Flujo Genético , Masculino , Repeticiones de Microsatélite/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA