Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 33(43): 12193-12203, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-28960992

RESUMEN

DNA-directed assembly of nano-objects as a means to manufacture advanced nanomaterial architectures has been the subject of many studies. However, most applications have dealt with noble metals as there are fundamental difficulties to work with other materials. In this work, we propose a generic and systematic approach for functionalizing and characterizing oxide surfaces with single-stranded DNA oligonucleotides. This protocol is applied to aluminum and copper oxide nanoparticles due to their great interest for the fabrication of highly energetic heterogeneous nanocomposites. The surface densities of streptavidin and biotinylated DNA oligonucleotides are precisely quantified combining atomic absorption spectroscopy with conventional dynamic light scattering and fluorometry and maximized to provide a basis for understanding the grafting mechanism. First, the streptavidin coverage is consistently below 20% of the total surface for both nanoparticles. Second, direct and unspecific grafting of DNA single strands onto Al and CuO nanoparticles largely dominates the overall functionalization process: ∼95% and 90% of all grafted DNA strands are chemisorbed on the CuO and Al nanoparticle surfaces, respectively. Measurements of hybridization efficiency indicate that only ∼5 and ∼10% of single-stranded oligonucleotides grafted onto the CuO and Al surfaces are involved in the hybridization process, corresponding precisely to the streptavidin coverage, as evidenced by the occupancy of 0.9 and 1.2 oligonucleotides per protein. The hybridization efficiency of single-stranded oligonucleotides chemisorbed on CuO and Al without streptavidin coating decreases to only ∼2%, justifying the use of streptavidin despite its poor surface occupancy. Finally, the structure of directly chemisorbed DNA strands onto oxide surfaces is examined and discussed.


Asunto(s)
Nanopartículas , Cobre , ADN , Hibridación de Ácido Nucleico , Oligonucleótidos , Óxidos
2.
Langmuir ; 32(37): 9676-86, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27578445

RESUMEN

The DNA-directed assembly of nano-objects has been the subject of many recent studies as a means to construct advanced nanomaterial architectures. Although much experimental in silico work has been presented and discussed, there has been no in-depth consideration of the proper design of single-strand sticky termination of DNA sequences, noted as ssST, which is important in avoiding self-folding within one DNA strand, unwanted strand-to-strand interaction, and mismatching. In this work, a new comprehensive and computationally efficient optimization algorithm is presented for the construction of all possible DNA sequences that specifically prevents these issues. This optimization procedure is also effective when a spacer section is used, typically repeated sequences of thymine or adenine placed between the ssST and the nano-object, to address the most conventional experimental protocols. We systematically discuss the fundamental statistics of DNA sequences considering complementarities limited to two (or three) adjacent pairs to avoid self-folding and hybridization of identical strands due to unwanted complements and mismatching. The optimized DNA sequences can reach maximum lengths of 9 to 34 bases depending on the level of applied constraints. The thermodynamic properties of the allowed sequences are used to develop a ranking for each design. For instance, we show that the maximum melting temperature saturates with 14 bases under typical solvation and concentration conditions. Thus, DNA ssST with optimized sequences are developed for segments ranging from 4 to 40 bases, providing a very useful guide for all technological protocols. An experimental test is presented and discussed using the aggregation of Al and CuO nanoparticles and is shown to validate and illustrate the importance of the proposed DNA coding sequence optimization.


Asunto(s)
ADN/química , Nanopartículas
3.
ACS Appl Mater Interfaces ; 14(1): 2301-2315, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34962370

RESUMEN

Freeform liquid three-dimensional printing (FL-3DP) is a promising new additive manufacturing process that uses a yield stress gel as a temporary support, enabling the processing of a broader class of inks into complex geometries, including those with low viscosities or long solidification kinetics that were previously not processable. However, the full exploitation of these advantages for the fabrication of complex multilateral structures has been hindered by difficulties in controlling the interfaces between inks and supports. In this work, an in-depth study of the rheological properties and interfacial stabilities between a nanoclay-modified support and silicone-based inks enabled a better understanding of the impact printing parameters have on the extruded filament morphology, and thus on printing resolutions. With these improvements, the fabrication of functional multimaterial pneumatic components applied to soft robotics could be demonstrated, exhibiting superior capabilities compared to casting or traditional extrusion-based additive manufacturing in terms of geometric freedom (overhanging and multimaterial structures), tunability of the component's functionality, and robustness between different phases. Overall, the full exploitation of FL-3DP advantages enables a broader design space for features and functionalities in soft robotic components that require complex and robust combinations of materials.

4.
Materials (Basel) ; 13(1)2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878040

RESUMEN

Nanomaterials have allowed significant breakthroughs in bio-engineering and medical fields. In the present paper a holistic assessment on diverse biocompatible nanocomposites are studied. Their compatibility with advanced fabrication methods such as additive manufacturing for the design of functional medical implants is also critically reviewed. The significance of nanocomposites and processing techniques is also envisaged comprehensively in regard with the needs and futures of implantable medical device industries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA