Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Molecules ; 29(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39274886

RESUMEN

Bitumen, a vital component in road pavement construction, exhibits complex chemo-mechanical properties that necessitate thorough characterization for enhanced understanding and potential modifications. Nuclear Magnetic Resonance (NMR) spectroscopy emerges as a valuable technique for probing the structural and compositional features of bitumen. This review presents an in-depth exploration of the role of NMR spectroscopy in bitumen characterization, highlighting its diverse applications in determining bitumen content, group composition, molecular dynamics, and interaction with additives. Various NMR techniques, including free induction decay (FID), Carr-Purcell-Meilboom-Gill (CPMG), and Pulsed Field Gradient Stimulated Echo (PFGSE), are discussed in the context of their utility in bitumen analysis. Case studies, challenges, and limitations associated with NMR-based bitumen characterization are critically evaluated, offering insights into potential future research directions. Overall, this review provides a comprehensive overview of the current state-of-the-art in NMR-based bitumen characterization and identifies avenues for further advancement in the field.

2.
Molecules ; 29(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38257213

RESUMEN

Enhanced oil recovery (EOR) processes are technologies used in the oil and gas industry to maximize the extraction of residual oil from reservoirs after primary and secondary recovery methods have been carried out. The injection into the reservoir of surface-active substances capable of reducing the surface tension between oil and the rock surface should favor its extraction with significant economic repercussions. However, the most commonly used surfactants in EOR are derived from petroleum, and their use can have negative environmental impacts, such as toxicity and persistence in the environment. Biosurfactants on the other hand, are derived from renewable resources and are biodegradable, making them potentially more sustainable and environmentally friendly. The present review intends to offer an updated overview of the most significant results available in scientific literature on the potential application of biosurfactants in the context of EOR processes. Aspects such as production strategies, techniques for characterizing the mechanisms of action and the pros and cons of the application of biosurfactants as a principal method for EOR will be illustrated and discussed in detail. Optimized concepts such as the HLD in biosurfactant choice and design for EOR are also discussed. The scientific findings that are illustrated and reviewed in this paper show why general emphasis needs to be placed on the development and adoption of biosurfactants in EOR as a substantial contribution to a more sustainable and environmentally friendly oil and gas industry.


Asunto(s)
Antracenos , Petróleo , Industrias , Tensión Superficial
3.
Chemphyschem ; 24(24): e202300217, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37691003

RESUMEN

In this investigation the dynamics of two types of bitumens with different penetration grade were tested by using dynamic shear rheometry (DSR) and Nuclear Magnetic Resonance (NMR) at unaged conditions, and upon both short- and long-term artificial aging. The gel-sol transition temperature T g e l → s o l * ${{T}_{gel\to sol}^{^{\ast}}}$ was found to increase with increasing the time of aging treatment. Arrhenius parameters of the viscosity were found, unexpectedly, to be correlated with those of simple liquids, suggesting that the two kinds of systems, although chemically and physically quite different, share the same basic process at the molecular level. The molecular dynamics has been then investigated by NMR Pulsed Field Gradient Stimulated-Echo (PFGSE) and relaxometry (Carr-Purcell-Meiboom-Gill, CPMG, spin-echo pulse sequence) to capture the effect of aging upon dynamics variables such as self-diffusion coefficients D and transverse relaxation times T2 . The translational diffusion at T> T g e l → s o l * ${{T}_{gel\to sol}^{^{\ast}}}$ of the light molecular components of both types of bitumens was characterized by broad distributions of D which were found independent of the experimental time scale up to 0.2 s. Similarly, T2 data could be described as a continuous unimodal distributions of relaxation times determined both at T< T g e l → s o l * ${{T}_{gel\to sol}^{^{\ast}}}$ and T> T g e l → s o l * ${{T}_{gel\to sol}^{^{\ast}}}$ .

4.
Molecules ; 27(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35630760

RESUMEN

This paper considers the effect of aging processes on viscoelastic characteristics of vacuum residue oxidation products modified with crumb rubber. Viscoelastic properties were compared to original bitumen raw material-vacuum residue and vacuum residue oxidation products during short-term and long-term aging. The complex shear modulus of the vacuum residue and its oxidation products decreased with an increase in temperature. Short-term aging resulted in increased shear modulus for all samples.The vacuum residue oxidation product modified with crumb rubber had the maximum values of the rutting parameter and fatigue parameter. There was an expansion of the temperature range of plasticity: for the vacuum residue oxidation product with crumb rubber, its value was 67.2 °C. The curves of the black diagram of the modified vacuum residue oxidation product are shifted towards smaller phase angles with the increase in the shear modulus, which indicates the increase in the stiffness and elasticity of the rubber bitumen binders. The vacuum residue oxidation product modified with crumb rubber corresponded to the rubber bitumen binder of the grade RBB 60/90, according to its physical and mechanical indicators.


Asunto(s)
Goma , Oxidación-Reducción , Goma/química , Temperatura , Vacio
5.
Molecules ; 27(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35807425

RESUMEN

A gold nanoparticles transparent electrode was realized by chemical reduction. This work aims to compare the transparent gold nanoparticles electrode with a more commonly utilized gold-film-coated electrode in order to investigate its potential use as counter-electrode (CE) in dye-sensitized solar cells (DSSCs). A series of DSSC devices, utilizing I-/I3- and Co(III)/(II) polypyridine redox mediators [Co(dtb)3]3+/2+; dtb = 4,4'ditert-butyl-2,2'-bipyridine)], were evaluated. The investigation focused firstly on the structural characterization of the deposited gold layers and then on the electrochemical study. The novelty of the work is the realization of a gold nanoparticles CE that reached 80% of average visible transmittance. We finally examined the performance of the transparent gold nanoparticles CE in DSSC devices. A maximum power conversion efficiency (PCE) of 4.56% was obtained with a commercial I-/I3--based electrolyte, while a maximum 3.1% of PCE was obtained with the homemade Co-based electrolyte.

6.
Molecules ; 27(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36500207

RESUMEN

Refuse-Derived Fuels (RDFs) are segregated forms of wastes obtained by a combined mechanical-biological processing of municipal solid wastes (MSWs). The narrower characteristics, e.g., high calorific value (18-24 MJ/kg), low moisture content (3-6%) and high volatile (77-84%) and carbon (47-56%) contents, make RDFs more suitable than MSWs for thermochemical valorization purposes. As a matter of fact, EU regulations encourage the use of RDF as a source of energy in the frameworks of sustainability and the circular economy. Pyrolysis and gasification are promising thermochemical processes for RDF treatment, since, compared to incineration, they ensure an increase in energy recovery efficiency, a reduction of pollutant emissions and the production of value-added products as chemical platforms or fuels. Despite the growing interest towards RDFs as feedstock, the literature on the thermochemical treatment of RDFs under pyrolysis and gasification conditions still appears to be limited. In this work, results on pyrolysis and gasification tests on a real RDF are reported and coupled with a detailed characterization of the gaseous, condensable and solid products. Pyrolysis tests have been performed in a tubular reactor up to three different final temperatures (550, 650 and 750 °C) while an air gasification test at 850 °C has been performed in a fluidized bed reactor using sand as the bed material. The results of the two thermochemical processes are analyzed in terms of yield, characteristics and quality of the products to highlight how the two thermochemical conversion processes can be used to accomplish waste-to-materials and waste-to-energy targets. The RDF gasification process leads to the production of a syngas with a H2/CO ratio of 0.51 and a tar concentration of 3.15 g/m3.


Asunto(s)
Residuos de Alimentos , Eliminación de Residuos , Eliminación de Residuos/métodos , Pirólisis , Incineración , Residuos Sólidos
7.
Molecules ; 25(23)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260426

RESUMEN

Scattering techniques represent non-invasive experimental approaches and powerful tools for the investigation of structure and conformation of biomaterial systems in a wide range of distances, ranging from the nanometric to micrometric scale. More specifically, small-angle X-rays and neutron scattering and light scattering techniques represent well-established experimental techniques for the investigation of the structural properties of biomaterials and, through the use of suitable models, they allow to study and mimic various biological systems under physiologically relevant conditions. They provide the ensemble averaged (and then statistically relevant) information under in situ and operando conditions, and represent useful tools complementary to the various traditional imaging techniques that, on the contrary, reveal more local structural information. Together with the classical structure characterization approaches, we introduce the basic concepts that make it possible to examine inter-particles interactions, and to study the growth processes and conformational changes in nanostructures, which have become increasingly relevant for an accurate understanding and prediction of various mechanisms in the fields of biotechnology and nanotechnology. The upgrade of the various scattering techniques, such as the contrast variation or time resolved experiments, offers unique opportunities to study the nano- and mesoscopic structure and their evolution with time in a way not accessible by other techniques. For this reason, highly performant instruments are installed at most of the facility research centers worldwide. These new insights allow to largely ameliorate the control of (chemico-physical and biologic) processes of complex (bio-)materials at the molecular length scales, and open a full potential for the development and engineering of a variety of nano-scale biomaterials for advanced applications.


Asunto(s)
Materiales Biocompatibles/química , Dispersión Dinámica de Luz/métodos , Difracción de Neutrones/métodos , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos , Materiales Biocompatibles/metabolismo , Dispersión Dinámica de Luz/instrumentación , Difracción de Neutrones/instrumentación , Relación Estructura-Actividad , Difracción de Rayos X/instrumentación
8.
Phys Chem Chem Phys ; 21(22): 11983-11991, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31134980

RESUMEN

The self-assembly process in a water solution of an amphiphilic polydimethylsiloxane-b-polyethyleneoxide (PDMS-PEO) diblock copolymer was investigated by means of small-angle X-ray scattering (SAXS) experiments in the concentration region below (and near) the critical micellar concentration (c.m.c. = 0.007 g cm-3). In the highly diluted region, at the copolymer concentration of c = 0.002 g cm-3, the early stage of the self-assembly process was characterized by the formation of small (primary) micellar units (with a radius of R = 2.7 nm) with core-shell morphology, which coexisted with larger supramolecular aggregates of entangled micelles (with an average radius of R = 9.5 nm). The increase in the copolymer concentration (to c = 0.005 and c = 0.01 g cm-3) caused increase in the sizes of both the small micelles and supra-micellar aggregates. Interestingly, at the concentration of c = 0.005 g cm-3, both the size and micelle aggregation number (Nagg) were found to increase on increasing the temperature in the range of 10 ≤ T ≤ 55 °C. This phenomenon was characterised by the dehydration process of the ethylene oxide (EO) segments, as evidenced by the calculation of excess water in the hydrophilic shell of the micelles. The more compact (less hydrated) structure of the hydrophilic PEO chains, which strongly influenced the spontaneous curvature of the amphiphile hydrophilic region, turned out to be the driving factor that favoured the increase in the micelle aggregation number with the increase in temperature. The obtained results evidence that the self-assembly process of PDMS-PEO copolymer amphiphiles is a gradual process that is already present at the very low concentration region (far below the macroscopically determined c.m.c.); moreover, it is characterised by a multi-stage organization process, where the primary building blocks self-assemble into more complex secondary structures that encompass multiple length scales.

9.
Biochim Biophys Acta ; 1858(11): 2769-2777, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27521487

RESUMEN

In spite of the growing variety of biological applications of dendrimer-based nanocarriers, a major problem of their potential applications in bio-medicine is related to the disruption of lipid bilayers and the cytotoxicity caused by the aggregation processes involved onto cellular membranes. With the aim to study model dendrimer-biomembrane interaction, the self-assembly processes of a mixture of charged polyamidoamine (PAMAM) dendrimers and dipalmitoylphosphatidylcholine (DPPC) lipids were investigated by means of Zeta potential analysis, Raman and x-ray scattering. Zwitterionic DPPC liposomes showed substantially different behaviors during their interaction with negatively charged (generation G=2.5) sodium carboxylate terminated (COO- Na+) dendrimers or positively charged (generation G=3.0) amino terminated (-NH2) dendrimers. More specifically the obtained results evidence the sensitive interactions between dendrimer terminals and lipid molecules at the surface of the liposome, with an enhancement of the liposome surface zeta potential, as well as in the hydrophobic region of the bilayers, where dendrimer penetration produce a perturbation of the hydrophobic alkyl chains of the bilayers. Analysis of the SAXS structure factor with a suitable model for the inter-dendrimers electrostatic potential allows an estimation of an effective charge of 15 ǀeǀ for G=2.5 and 7.6 ǀeǀ for G=3.0 PAMAM dendrimers. Only a fraction (about 1/7) of this charge contributes to the linear increase of liposome zeta-potential with increasing PAMAM/DPPC molar fraction. The findings of our investigation may be applied to rationalize the effect of the nanoparticles electrostatic interaction in solution environments for the design of new drug carriers combining dendrimeric and liposomal technology.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Dendrímeros/química , Portadores de Fármacos , Membrana Dobles de Lípidos/química , Liposomas/química , Ácidos Carboxílicos/química , Espectrometría Raman , Electricidad Estática , Termodinámica
10.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt B): 3531-3539, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26971858

RESUMEN

BACKGROUND: Interactions of ligands with proteins imply changes in the properties of the macromolecules that may deeply modify their biological activities and conformations and allow them to acquire new and, sometimes, unexpected abilities. The flavonoid phloretin has several pharmacological properties that are starting to be elucidated, one of which is the well-known inhibition of glucose transport. METHODS: The interactions of phloretin to human serum albumin have been investigated by fluorescence, UV-visible, FTIR spectroscopy, native electrophoresis, protein ligand docking studies, fluorescence and scanning electron microscopy. RESULTS: Spectroscopic investigations suggest that the flavonoid binds to human serum albumin inducing a decrease in α-helix structures as shown by deconvolution of FTIR Amide I' band. Fluorescence and displacement studies highlight modifications of environment around Trp214 with the primary binding site located in the Sudlow's site I. In the hydrophobic cavity of subdomain IIA, molecular modeling studies suggest that phloretin is in non-planar conformation and hydrogen-bonded with Ser202 and Ser454. These changes make HSA able to withstand protein degradation due to HCLO and fibrillation. GENERAL SIGNIFICANCE: Our work aims to open new perspectives as far as the binding of flavonoids to HSA are concern and shows as the properties of both compounds can be remarkable modified after the complex formation, resulting, for instance, in a protein structure much more resistant to oxidation and fibrillation. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.


Asunto(s)
Flavonoides/metabolismo , Estrés Oxidativo , Agregado de Proteínas , Albúmina Sérica/química , Albúmina Sérica/metabolismo , Sitios de Unión , Humanos , Microscopía Fluorescente , Modelos Moleculares , Floretina/química , Unión Proteica , Conformación Proteica , Proteolisis , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica
11.
Langmuir ; 30(28): 8336-41, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24979330

RESUMEN

Pure surfactant liquids and their binary mixtures, because of the amphiphilic nature of the molecules involved, can exhibit nanosegregation and peculiar transport properties. The idea that inspired this work is that the possibility of including in such media salts currently used for technological applications should lead to a synergy between the properties of the salt and those of the medium. Therefore, the dynamic features of bis(2-ethylhexyl)amine (BEEA) and bis(2-ethylhexyl)phosphoric acid (HDEHP) liquid mixtures were investigated as a function of composition and temperature by (1)H nuclear magnetic resonance (NMR) spectroscopy and rheometry. Inclusion of litium trifluoromethanesulfonate (LiT) has been investigated by infrared spectroscopy, pulsed field gradient NMR, and conductimetry methods to highlight the solubilizing and confining properties of these mixtures as well as the lithium conductivity. It was found that BEEA/HDEHP binary liquid mixtures show zero-threshold percolating self-assembly with a maximum in viscosity and a minimum in molecular diffusion at a 1:1 composition. Dissolution of LiT in such system can occur via confinement in the locally self-assembled polar domains. Despite this confinement, Li(+) conduction is scarcely dependent on the medium composition because of the possibility of a field-induced hopping decoupled by the structural and dynamical features of the medium.

12.
J Chem Phys ; 141(8): 084904, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25173042

RESUMEN

The structure of (1R,2S)-dodecyl(2-hydroxy-1-methyl-2-phenylethyl)dimethylammonium bromide (DMEB) reverse micelles, at various water-to-surfactant molar ratio (Rw, Rw = [water]/[DMEB]) and DMEB concentrations, has been investigated by small angle X-ray scattering (SAXS) and extended X-ray absorption fine structure spectroscopy (EXAFS). SAXS data of dry reverse micelles are consistent with a model of spherical hydrophilic core surrounded by DMEB alkyl chains whose polydispersity decreases significantly with surfactant concentration. By adding water, a sphere to cylinder transition occurs leading to a one-dimensional growth of reverse micellar cores with Rw and surfactant concentration. The observed behavior was taken as an indication that water molecules are confined in the core of DMEB reverse micelles, quite uniformly distributed among them and mainly located among surfactant head groups. EXAFS data allow to focus within the hydrophilic micellar core to solve the short range local environment around the Br(-) counterion and to follow its changing with surfactant concentration and Rw. Analysis of Fourier transform of the EXAFS spectra indicates the existence of a local order nearby the bromide ions; pointing toward a quite structured hydrophilic core of DMEB reverse micelles. However, as a consequence of the fluid nature of reverse micelles, such local order is lower than that found in the lamellar structure of solid DMEB. Water confinement within the reverse micellar cores induces an increase of the local disorder suggesting an enhancement of the micellar core dynamics.

13.
Heliyon ; 10(1): e23192, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38205314

RESUMEN

Improving the mechanical properties of bitumen is an important goal for road pavements design. For this reason, new compounds are now being sought for testing as bitumen modifiers. In this work, the authors studied the effect that two different chars have on two 50/70 bitumens with different chemical and physical characteristics. A complete morphological, surface and bulk characterization of the two additives was carried out. In addition, rheology, Nuclear Magnetic Resonance (NMR) relaxometry and atomic force microscopy were used to analyze the effect that the two additives exert on the properties of the bitumens. According to the results, the char sample with high porosity could be used as a modifier of mechanical properties, while no rejuvenation effects were observed for either of the two additives tested. In addition, the two additives do not give rise to segregation phenomena.

14.
Langmuir ; 29(48): 14848-54, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24490829

RESUMEN

The dynamic features of bis(2-ethylhexyl)phosphoric acid (HDEHP)/n-octylamine (NOA) mixtures have been investigated as a function of the NOA mole fraction and temperature by (1)H NMR spectroscopy and rheometry. All data consistently suggest a composition-induced glass-forming behavior. The microscopic factors responsible for this behavior have been highlighted and have been explained in terms of driving forces given by HDEHP-to-NOA proton transfer, the tendency of the resulting species to establish H bonds and to spatially segregate the alkyl chains. The study sheds light on the molecular mechanism responsible for the peculiar behavior of transport properties in such systems and furnishes basic knowledge to be used to design novel materials with planned physicochemical properties.


Asunto(s)
Aminas/química , Organofosfatos/química , Tensoactivos/química , Tensoactivos/síntesis química , Termodinámica , Difusión , Modelos Moleculares , Estructura Molecular , Reología
15.
Langmuir ; 29(23): 7079-86, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23651236

RESUMEN

We describe the hydrothermal synthesis of zeolite Linde type A (LTA) submicrometer particles using a water-soluble amphiphilic block copolymer of poly(dimethylsiloxane)-b-poly(ethylene oxide) as a template. The formation and growth of the intermediate aggregates in the presence of the diblock copolymer have been monitored by small-angle X-ray scattering (SAXS) above the critical micellar concentration at a constant temperature of 45 °C. The early stage of the growth process was characterized by the incorporation of the zeolite LTA components into the surface of the block copolymer micellar aggregates with the formation of primary units of 4.8 nm with a core-shell morphology. During this period, restricted to an initial time of 1-3 h, the core-shell structure of the particles does not show significant changes, while a subsequent aggregation process among these primary units takes place. A shape transition of the SAXS profile at the late stage of the synthesis has been connected with an aggregation process among primary units that leads to the formation of large clusters with fractal characteristics. The formation of large supramolecular assemblies was finally verified by scanning electron microscopy, which evidenced the presence of submicrometer aggregates with size ranging between 100 and 300 nm, while X-ray diffraction confirmed the presence of crystalline zeolite LTA. The main finding of our results gives novel insight into the mechanism of formation of organic-inorganic mesoporous materials based on the use of a soft interacting nanotemplate as well as stimulates the investigation of alternative protocols for the synthesis of novel hybrid materials with new characteristics and properties.


Asunto(s)
Dimetilpolisiloxanos/síntesis química , Polietilenglicoles/síntesis química , Zeolitas/síntesis química , Dimetilpolisiloxanos/química , Tamaño de la Partícula , Polietilenglicoles/química , Propiedades de Superficie , Zeolitas/química
16.
J Chem Phys ; 136(6): 064515, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22360203

RESUMEN

This work focuses on the dynamic phenomena emerging in self-assembled transient intermolecular networks formed when two different surfactants are mixed. In particular, the relaxation processes in liquid mixtures composed by bis(2-ethylhexyl)amine (BEEA) and octanoic acid (OA) in the whole composition range has been investigated by dielectric spectroscopy and Brillouin spectroscopy. A thorough analysis of all the experimental data consistently suggests that, mainly driven by acid-base interactions arising when the two surfactants are mixed, supra-molecular aggregates formation causes the slowing down of molecular dynamics. This, in turn, reflects to longer-range relaxations. These changes have been found to be composition-dependent, involving strong departures of the mixture physico-chemical properties from an ideal behaviour, and reflecting the structural and dynamical features of local structures. In particular, the peculiar dynamic processes occurring in these local inter-molecular structures, have been found to be the factors responsible for the observed and quite surprising increase of direct-current conductivity which occurs when two different (and pretty non-conductive) surfactants are mixed. The discovery can be used not only to design novel materials for application purposes but also to shed more light on the basic principles regulating charge migration in structured liquid systems.

17.
J Colloid Interface Sci ; 614: 277-287, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35101675

RESUMEN

HYPOTHESIS: Inorganic small particles stemming from mineral extraction (i.e. mining waste) could be used as additive for road paving applications to improve bitumen mechanical properties. Such an approach is expected to increase bitumen life-cycle cutting costs connected to their preparation and to reduce environmental issues. Experiment: Bitumens containing various amounts (up to 10% w/w) of filler made of mining tailings fine powder were characterized by means of oscillatory rheometry focusing on the effect of the filler content, temperature and filler milling time. FINDINGS: (i) Superior resistance to stress, rutting, and fatigue were shown by the filler-containing mixtures. In addition, higher durability was observed for the filler concentration of 10% w/w. These effects were interpreted on the grounds of the physico-chemical interactions between the bitumen and the inorganic filler suggesting important utilizations. (ii) The present research points towards a circular economy path. Particularly, this study demonstrates how an abundant and potentially harmful waste can be converted into a high value-added component for road paving. Furthermore, increased durability of bitumen is beneficial in both economic and environmental terms.


Asunto(s)
Hidrocarburos , Hidrocarburos/química , Temperatura
18.
ACS Sustain Chem Eng ; 10(5): 1888-1898, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35154910

RESUMEN

The fabrication of enzyme-based biosensors has received much attention for their selectivity and sensitivity. In particular, laccase-based biosensors have attracted a lot of interest for their capacity to detect highly toxic molecules in the environment, becoming essential tools in the fields of white biotechnology and green chemistry. The manufacturing of a new, metal-free, laccase-based biosensor with unprecedented reuse and storage capabilities has been achieved in this work through the application of the electrospray deposition (ESD) methodology as the enzyme immobilization technique. Electrospray ionization (ESI) has been used for ambient soft-landing of laccase enzymes on a carbon substrate, employing sustainable chemistry. This study shows how the ESD technique can be successfully exploited for the fabrication of a new promising environment-friendly electrochemical amperometric laccase-based biosensor, with storage capability up to two months without any particular care and reuse performance up to 63 measurements on the same electrode just prepared and 20 measurements on the one-year-old electrode subjected to redeposition. The laccase-based biosensor has been tested for catechol detection in the linear range 2-100 µM, with a limit of detection of 1.7 µM, without interference from chrome, cadmium, arsenic, and zinc and without any memory effects.

19.
Talanta ; 224: 121854, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33379070

RESUMEN

Herein we describe the design and synthesis of novel artificial peptides mimicking the plastoquinone binding niche of the D1 protein from the green photosynthetic alga Chlamydomonas reinhardtii, also able to bind herbicides. In particular, molecular dynamics (MD) simulations were performed to model in silico the behaviour of three peptides, D1Pep70-H, D1Pep70-S264K and D1Pep70-S268C, as genetic variants with different affinity towards the photosynthetic herbicide atrazine. Then the photosynthetic peptides were functionalised with quantum dots for the development of a hybrid optosensor for the detection of atrazine, one of the most employed herbicides for weed control in agriculture as well as considered as a putative endocrine disruptor case study. The excellent agreement between computational and experimental results self consistently shows resistance or super-sensitivity toward the atrazine target, with detection limits in the µg/L concentration range, meeting the requirements of E.U. legislation.


Asunto(s)
Chlamydomonas reinhardtii , Disruptores Endocrinos , Herbicidas , Puntos Cuánticos , Herbicidas/análisis , Péptidos , Complejo de Proteína del Fotosistema II
20.
Materials (Basel) ; 13(5)2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32110877

RESUMEN

In this paper, we survey recent advances in the self-assembly processes of novel functional platforms for nanomaterials and biomaterials applications. We provide an organized overview, by analyzing the main factors that influence the formation of organic nanostructured systems, while putting into evidence the main challenges, limitations and emerging approaches in the various fields of nanotechology and biotechnology. We outline how the building blocks properties, the mutual and cooperative interactions, as well as the initial spatial configuration (and environment conditions) play a fundamental role in the construction of efficient nanostructured materials with desired functional properties. The insertion of functional endgroups (such as polymers, peptides or DNA) within the nanostructured units has enormously increased the complexity of morphologies and functions that can be designed in the fabrication of bio-inspired materials capable of mimicking biological activity. However, unwanted or uncontrollable effects originating from unexpected thermodynamic perturbations or complex cooperative interactions interfere at the molecular level with the designed assembly process. Correction and harmonization of unwanted processes is one of the major challenges of the next decades and requires a deeper knowledge and understanding of the key factors that drive the formation of nanomaterials. Self-assembly of nanomaterials still remains a central topic of current research located at the interface between material science and engineering, biotechnology and nanomedicine, and it will continue to stimulate the renewed interest of biologist, physicists and materials engineers by combining the principles of molecular self-assembly with the concept of supramolecular chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA