Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298634

RESUMEN

Beyond deficits in hippocampal-dependent episodic memory, Alzheimer's Disease (AD) features sensory impairment in visual cognition consistent with extensive neuropathology in the retina. 12A12 is a monoclonal cleavage specific antibody (mAb) that in vivo selectively neutralizes the AD-relevant, harmful N-terminal 20-22 kDa tau fragment(s) (i.e., NH2htau) without affecting the full-length normal protein. When systemically injected into the Tg2576 mouse model overexpressing a mutant form of Amyloid Precursor Protein (APP), APPK670/671L linked to early onset familial AD, this conformation-specific tau mAb successfully reduces the NH2htau accumulating both in their brain and retina and, thus, markedly alleviates the phenotype-associated signs. By means of a combined biochemical and metabolic experimental approach, we report that 12A12mAb downregulates the steady state expression levels of APP and Beta-Secretase 1 (BACE-1) and, thus, limits the Amyloid beta (Aß) production both in the hippocampus and retina from this AD animal model. The local, antibody-mediated anti-amyloidogenic action is paralleled in vivo by coordinated modulation of the endocytic (BIN1, RIN3) and bioenergetic (glycolysis and L-Lactate) pathways. These findings indicate for the first time that similar molecular and metabolic retino-cerebral pathways are modulated in a coordinated fashion in response to 12A12mAb treatment to tackle the neurosensorial Aß accumulation in AD neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Metabolismo Energético , Modelos Animales de Enfermedad , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas tau/metabolismo , Ratones Transgénicos
2.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34830036

RESUMEN

Tau cleavage plays a crucial role in the onset and progression of Alzheimer's Disease (AD), a widespread neurodegenerative disease whose incidence is expected to increase in the next years. While genetic and familial forms of AD (fAD) occurring early in life represent less than 1%, the sporadic and late-onset ones (sAD) are the most common, with ageing being an important risk factor. Intracerebroventricular (ICV) infusion of streptozotocin (STZ)-a compound used in the systemic induction of diabetes due to its ability to damage the pancreatic ß cells and to induce insulin resistance-mimics in rodents several behavioral, molecular and histopathological hallmarks of sAD, including memory/learning disturbance, amyloid-ß (Aß) accumulation, tau hyperphosphorylation, oxidative stress and brain glucose hypometabolism. We have demonstrated that pathological truncation of tau at its N-terminal domain occurs into hippocampi from two well-established transgenic lines of fAD animal models, such as Tg2576 and 3xTg mice, and that it's in vivo neutralization via intravenous (i.v.) administration of the cleavage-specific anti-tau 12A12 monoclonal antibody (mAb) is strongly neuroprotective. Here, we report the therapeutic efficacy of 12A12mAb in STZ-infused mice after 14 days (short-term immunization, STIR) and 21 days (long-term immunization regimen, LTIR) of i.v. delivery. A virtually complete recovery was detected after three weeks of 12A12mAb immunization in both novel object recognition test (NORT) and object place recognition task (OPRT). Consistently, three weeks of this immunization regimen relieved in hippocampi from ICV-STZ mice the AD-like up-regulation of amyloid precursor protein (APP), the tau hyperphosphorylation and neuroinflammation, likely due to modulation of the PI3K/AKT/GSK3-ß axis and the AMP-activated protein kinase (AMPK) activities. Cerebral oxidative stress, mitochondrial impairment, synaptic and histological alterations occurring in STZ-infused mice were also strongly attenuated by 12A12mAb delivery. These results further strengthen the causal role of N-terminal tau cleavage in AD pathogenesis and indicate that its specific neutralization by non-invasive administration of 12A12mAb can be a therapeutic option for both fAD and sAD patients, as well as for those showing type 2 diabetes as a comorbidity.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/metabolismo , Proteolisis , Estreptozocina/efectos adversos , Proteínas tau/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/genética , Animales , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/genética , Masculino , Ratones , Ratones Transgénicos , Estreptozocina/farmacología , Proteínas tau/genética
3.
J Cell Physiol ; 233(10): 7178-7187, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29741791

RESUMEN

Nerve growth factor, the prototype of a family of neurotrophins, elicits differentiation and survival of peripheral and central neuronal cells. Although its neural mechanisms have been studied extensively, relatively little is known about the transcriptional regulation governing its effects. We have previously observed that in primary cultures of rat hippocampal neurons treatment with nerve growth factor for 72 hr increases neurite outgrowth and cell survival. To obtain a comprehensive view of the underlying transcriptional program, we performed whole-genome expression analysis by microarray technology. We identified 541 differentially expressed genes and characterized dysregulated pathways related to innate immunity: the complement system and neuro-inflammatory signaling. The exploitation of such genes and pathways may help interfering with the intracellular mechanisms involved in neuronal survival and guide novel therapeutic strategies for neurodegenerative diseases.


Asunto(s)
Antiinflamatorios/farmacología , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Inflamación/tratamiento farmacológico , Neuronas/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Regulación de la Expresión Génica/fisiología , Hipocampo/efectos de los fármacos , Terapia de Inmunosupresión/métodos , Neuritas/efectos de los fármacos , Proyección Neuronal/efectos de los fármacos , Neuronas/metabolismo , Ratas Wistar
4.
Int J Mol Sci ; 18(6)2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28632177

RESUMEN

Dysfunction of nerve growth factor (NGF) and its high-affinity Tropomyosin receptor kinase A (TrkA) receptor has been suggested to contribute to the selective degeneration of basal forebrain cholinergic neurons (BFCN) associated with the progressive cognitive decline in Alzheimer's disease (AD). The aim of this review is to describe our progress in elucidating the molecular mechanisms underlying the dynamic interplay between NGF/TrkA signaling and amyloid precursor protein (APP) metabolism within the context of AD neuropathology. This is mainly based on the finding that TrkA receptor binding to APP depends on a minimal stretch of ~20 amino acids located in the juxtamembrane/extracellular domain of APP that carries the α- and ß-secretase cleavage sites. Here, we provide evidence that: (i) NGF could be one of the "routing" proteins responsible for modulating the metabolism of APP from amyloidogenic towards non-amyloidogenic processing via binding to the TrkA receptor; (ii) the loss of NGF/TrkA signaling could be linked to sporadic AD contributing to the classical hallmarks of the neuropathology, such as synaptic loss, ß-amyloid peptide (Aß) deposition and tau abnormalities. These findings will hopefully help to design therapeutic strategies for AD treatment aimed at preserving cholinergic function and anti-amyloidogenic activity of the physiological NGF/TrkA pathway in the septo-hippocampal system.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Receptor trkA/metabolismo , Transducción de Señal , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas , Animales , Neuronas Colinérgicas , Hipocampo/metabolismo , Humanos , Neuropatología , Sinapsis/metabolismo , Proteínas tau/metabolismo
5.
Int J Mol Sci ; 15(4): 5596-622, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24694544

RESUMEN

Apoptosis triggered by exogenous or endogenous stimuli is a crucial phenomenon to determine the fate of neurons, both in physiological and in pathological conditions. Our previous study established that gastric inhibitory polypeptide (Gip) is a neurotrophic factor capable of preventing apoptosis of cerebellar granule neurons (CGNs), during its pre-commitment phase. In the present study, we conducted whole-genome expression profiling to obtain a comprehensive view of the transcriptional program underlying the rescue effect of Gip in CGNs. By using DNA microarray technology, we identified 65 genes, we named survival related genes, whose expression is significantly de-regulated following Gip treatment. The expression levels of six transcripts were confirmed by real-time quantitative polymerase chain reaction. The proteins encoded by the survival related genes are functionally grouped in the following categories: signal transduction, transcription, cell cycle, chromatin remodeling, cell death, antioxidant activity, ubiquitination, metabolism and cytoskeletal organization. Our data outline that Gip supports CGNs rescue via a molecular framework, orchestrated by a wide spectrum of gene actors, which propagate survival signals and support neuronal viability.


Asunto(s)
Apoptosis/genética , Cerebelo/citología , Polipéptido Inhibidor Gástrico/metabolismo , Neuronas/citología , Animales , Antioxidantes , Puntos de Control del Ciclo Celular/genética , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Ratas Wistar , Transducción de Señal , Transcripción Genética , Ubiquitinación/genética
6.
Cells ; 12(18)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37759477

RESUMEN

Increasing evidence implicates decreased energy metabolism and mitochondrial dysfunctions among the earliest pathogenic events of Alzheimer's disease (AD). However, the molecular mechanisms underlying bioenergetic dysfunctions in AD remain, to date, largely unknown. In this work, we analyzed transcriptomic changes occurring in the hippocampus and retina of a Tg2576 AD mouse model and wild-type controls, evaluating their functional implications by gene set enrichment analysis. The results revealed that oxidative phosphorylation and mitochondrial-related pathways are significantly down-regulated in both tissues of Tg2576 mice, supporting the role of these processes in the pathogenesis of AD. In addition, we also analyzed transcriptomic changes occurring in Tg2576 mice treated with the 12A12 monoclonal antibody that neutralizes an AD-relevant tau-derived neurotoxic peptide in vivo. Our analysis showed that the mitochondrial alterations observed in AD mice were significantly reverted by treatment with 12A12mAb, supporting bioenergetic pathways as key mediators of its in vivo neuroprotective and anti-amyloidogenic effects. This study provides, for the first time, a comprehensive characterization of molecular events underlying the disrupted mitochondrial bioenergetics in AD pathology, laying the foundation for the future development of diagnostic and therapeutic tools.

7.
Pharmaceutics ; 15(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36839831

RESUMEN

Tau-targeted immunotherapy is a promising approach for treatment of Alzheimer's disease (AD). Beyond cognitive decline, AD features visual deficits consistent with the manifestation of Amyloid ß-protein (Aß) plaques and neurofibrillary tangles (NFT) in the eyes and higher visual centers, both in animal models and affected subjects. We reported that 12A12-a monoclonal cleavage-specific antibody (mAb) which in vivo neutralizes the neurotoxic, N-terminal 20-22 kDa tau fragment(s)-significantly reduces the retinal accumulation in Tg(HuAPP695Swe)2576 mice of both tau and APP/Aß pathologies correlated with local inflammation and synaptic deterioration. Here, we report the occurrence of N-terminal tau cleavage in the primary visual cortex (V1 area) and the beneficial effect of 12A12mAb treatment on phenotype-associated visuo-spatial deficits in this AD animal model. We found out that non-invasive administration of 12 A12mAb markedly reduced the pathological accumulation of both truncated tau and Aß in the V1 area, correlated to significant improvement in visual recognition memory performance along with local increase in two direct readouts of cortical synaptic plasticity, including the dendritic spine density and the expression level of activity-regulated cytoskeleton protein Arc/Arg3.1. Translation of these findings to clinical therapeutic interventions could offer an innovative tau-directed opportunity to delay or halt the visual impairments occurring during AD progression.

8.
J Neurosci ; 31(33): 11756-61, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21849536

RESUMEN

The pathogenic model of Alzheimer's disease (AD) posits that aggregates of amyloid ß, a product of amyloid precursor protein (APP) processing, cause dementia. However, alterations of normal APP functions could contribute to AD pathogenesis, and it is therefore important to understand the role of APP. APP is a member of a gene family that shows functional redundancy as documented by the evidence that single knock-out mice are viable, whereas mice with combined deletions of APP family genes die shortly after birth. A residue in the APP intracellular region, Y(682), is indispensable for these essential functions of APP. It is therefore important to identify pathways that regulate phosphorylation of Y(682) as well as the role of Y(682) in vivo. TrkA is associated with both phosphorylation of APP-Y(682) and alteration of APP processing, suggesting that tyrosine phosphorylation of APP links APP processing and neurotrophic signaling to intracellular pathways associated with cellular differentiation and survival. Here we have tested whether the NGF/TrkA signaling pathway is a physiological regulator of APP phosphorylation. We find that NGF induces tyrosine phosphorylation of APP, and that APP interacts with TrkA and this interaction requires Y(682). Unpredictably, we also uncover that APP, and specifically Y(682), regulates activation of the NGF/TrkA signaling pathway in vivo, the subcellular distribution of TrkA and the sensitivity of neurons to the trophic action of NGF. This evidence suggests that these two membrane protein's functions are strictly interconnected and that the NGF/TrkA signaling pathway is involved in AD pathogenesis and can be used as a therapeutic target.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Receptor trkA/fisiología , Transducción de Señal/fisiología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/fisiología , Animales , Células Cultivadas , Femenino , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Factor de Crecimiento Nervioso/fisiología , Fosforilación/fisiología , Receptor trkA/metabolismo , Tirosina/fisiología
9.
Front Aging Neurosci ; 14: 1015359, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466614

RESUMEN

The neurosensory retina is an outgrowth of the Central Nervous System (CNS), and the eye is considered "a window to the brain." Reelin glycoprotein is directly involved in neurodevelopment, in synaptic plasticity, learning and memory. Consequently, abnormal Reelin signaling has been associated with brain neurodegeneration but its contributing role in ocular degeneration is still poorly explored. To this aim, experimental procedures were assayed on vitreous or retinas obtained from Reeler mice (knockout for Reelin protein) at different postnatal days (p) p14, p21 and p28. At p28, a significant increase in the expression of Amyloid Precursor Protein (APP) and its amyloidogenic peptide (Aß1-42 along with truncated tau fragment (i.e., NH2htau)- three pathological hallmarks of Alzheimer's disease (AD)-were found in Reeler mice when compared to their age-matched wild-type controls. Likewise, several inflammatory mediators, such as Interleukins, or crucial biomarkers of oxidative stress were also found to be upregulated in Reeler mice by using different techniques such as ELLA assay, microchip array or real-time PCR. Taken together, these findings suggest that a dysfunctional Reelin signaling enables the expression of key pathological features which are classically associated with AD neurodegenerative processes. Thus, this work suggests that Reeler mouse might be a suitable animal model to study not only the pathophysiology of developmental processes but also several neurodegenerative diseases, such as AD and Age-related Macular Degeneration (AMD), characterized by accumulation of APP and/or Aß1-42, NH2htau and inflammatory markers.

10.
Proc Natl Acad Sci U S A ; 105(35): 13139-44, 2008 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-18728191

RESUMEN

Here, we report that interruption of NGF or BDNF signaling in hippocampal neurons rapidly activates the amyloidogenic pathway and causes neuronal apoptotic death. These events are associated with an early intracellular accumulation of PS1 N-terminal catalytic subunits and of APP C-terminal fragments and a progressive accumulation of intra- and extracellular Abeta aggregates partly released into the culture medium. The released pool of Abeta induces an increase of APP and PS1 holoprotein levels, creating a feed-forward toxic loop that might also cause the death of healthy neurons. These events are mimicked by exogenously added Abeta and are prevented by exposure to beta- and gamma-secretase inhibitors and by antibodies directed against Abeta peptides. The same cultured neurons deprived of serum die, but APP and PS1 overexpression does not occur, Abeta production is undetectable, and cell death is not inhibited by anti-Abeta antibodies, suggesting that hippocampal amyloidogenesis is not a simple consequence of an apoptotic trigger but is due to interruption of neurotrophic signaling.


Asunto(s)
Péptidos beta-Amiloides/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/citología , Factor de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo , Transducción de Señal , Péptidos beta-Amiloides/farmacología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Anticuerpos/farmacología , Western Blotting , Factor Neurotrófico Derivado del Encéfalo/farmacología , Muerte Celular/efectos de los fármacos , Extractos Celulares , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Factor de Crecimiento Nervioso/farmacología , Neuronas/citología , Neuronas/efectos de los fármacos , Embarazo , Ratas , Ratas Wistar , Suero , Transducción de Señal/efectos de los fármacos
11.
Front Neurosci ; 15: 735928, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566573

RESUMEN

Alzheimer's disease (AD) is an age-associated neurodegenerative disease which is the most common cause of dementia among the elderly. Imbalance in nerve growth factor (NGF) signaling, metabolism, and/or defect in NGF transport to the basal forebrain cholinergic neurons occurs in patients affected with AD. According to the cholinergic hypothesis, an early and progressive synaptic and neuronal loss in a vulnerable population of basal forebrain involved in memory and learning processes leads to degeneration of cortical and hippocampal projections followed by cognitive impairment with accumulation of misfolded/aggregated Aß and tau protein. The neuroprotective and regenerative effects of NGF on cholinergic neurons have been largely demonstrated, both in animal models of AD and in living patients. However, the development of this neurotrophin as a disease-modifying therapy in humans is challenged by both delivery limitations (inability to cross the blood-brain barrier (BBB), poor pharmacokinetic profile) and unwanted side effects (pain and weight loss). Age-related macular degeneration (AMD) is a retinal disease which represents the major cause of blindness in developed countries and shares several clinical and pathological features with AD, including alterations in NGF transduction pathways. Interestingly, nerve fiber layer thinning, degeneration of retinal ganglion cells and changes of vascular parameters, aggregation of Aß and tau protein, and apoptosis also occur in the retina of both AD and AMD. A protective effect of ocular administration of NGF on both photoreceptor and retinal ganglion cell degeneration has been recently described. Besides, the current knowledge about the detection of essential trace metals associated with AD and AMD and their changes depending on the severity of diseases, either systemic or locally detected, further pave the way for a promising diagnostic approach. This review is aimed at describing the employment of NGF as a common therapeutic approach to AMD and AD and the diagnostic power of detection of essential trace metals associated with both diseases. The multiple approaches employed to allow a sustained release/targeting of NGF to the brain and its neurosensorial ocular extensions will be also discussed, highlighting innovative technologies and future translational prospects.

12.
Cells ; 10(11)2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34831459

RESUMEN

Neuronal apoptosis and survival are regulated at the transcriptional level. To identify key genes and upstream regulators primarily responsible for these processes, we overlayed the temporal transcriptome of cerebellar granule neurons following induction of apoptosis and their rescue by three different neurotrophic factors. We identified a core set of 175 genes showing opposite expression trends at the intersection of apoptosis and survival. Their functional annotations and expression signatures significantly correlated to neurological, psychiatric and oncological disorders. Transcription regulatory network analysis revealed the action of nine upstream transcription factors, converging pro-apoptosis and pro-survival-inducing signals in a highly interconnected functionally and temporally ordered manner. Five of these transcription factors are potential drug targets. Transcriptome-based computational drug repurposing produced a list of drug candidates that may revert the apoptotic core set signature. Besides elucidating early drivers of neuronal apoptosis and survival, our systems biology-based perspective paves the way to innovative pharmacology focused on upstream targets and regulatory networks.


Asunto(s)
Apoptosis , Linaje de la Célula , Neuronas/citología , Transcripción Genética , Animales , Apoptosis/genética , Supervivencia Celular/genética , Análisis por Conglomerados , Reposicionamiento de Medicamentos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Trastornos Mentales/genética , Anotación de Secuencia Molecular , Enfermedades del Sistema Nervioso/genética , Neuronas/metabolismo , Mapas de Interacción de Proteínas/genética , Ratas Wistar , Factores de Tiempo , Factores de Transcripción/metabolismo
13.
Acta Neuropathol Commun ; 9(1): 38, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750467

RESUMEN

Retina and optic nerve are sites of extra-cerebral manifestations of Alzheimer's Disease (AD). Amyloid-ß (Aß) plaques and neurofibrillary tangles of hyperphosphorylated tau protein are detected in eyes from AD patients and transgenic animals in correlation with inflammation, reduction of synapses, visual deficits, loss of retinal cells and nerve fiber. However, neither the pathological relevance of other post-translational tau modifications-such as truncation with generation of toxic fragments-nor the potential neuroprotective action induced by their in vivo clearance have been investigated in the context of AD retinal degeneration. We have recently developed a monoclonal tau antibody (12A12mAb) which selectively targets the neurotoxic 20-22 kDa NH2-derived peptide generated from pathological truncation at the N-terminal domain of tau without cross-reacting with its full-length normal protein. Previous studies have shown that 12A12mAb, when intravenously (i.v.)-injected into 6-month-old Tg2576 animals, markedly improves their AD-like, behavioural and neuropathological syndrome. By taking advantage of this well-established tau-directed immunization regimen, we found that 12A12mAb administration also exerts a beneficial action on biochemical, morphological and metabolic parameters (i.e. APP/Aß processing, tau hyperphosphorylation, neuroinflammation, synaptic proteins, microtubule stability, mitochondria-based energy production, neuronal death) associated with ocular injury in the AD phenotype. These findings prospect translational implications in the AD field by: (1) showing for the first time that cleavage of tau takes part in several pathological changes occurring in vivo in affected retinas and vitreous bodies and that its deleterious effects are successfully antagonized by administration of the specific 12A12mAb; (2) shedding further insights on the tight connections between neurosensory retina and brain, in particular following tau-based immunotherapy. In our view, the parallel response we detected in this preclinical animal model, both in the eye and in the hippocampus, following i.v. 12A12mAb injection opens novel diagnostic and therapeutic avenues for the clinical management of cerebral and extracerebral AD signs in human beings.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Inmunoglobulinas Intravenosas/inmunología , Inmunoglobulinas Intravenosas/uso terapéutico , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/etiología , Proteínas tau/química , Proteínas tau/inmunología , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Anticuerpos/inmunología , Anticuerpos/aislamiento & purificación , Anticuerpos/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Inmunoglobulinas Intravenosas/administración & dosificación , Ratones , Ratones Transgénicos , Mitocondrias/patología , Neuronas , Placa Amiloide/patología , Retina/patología , Degeneración Retiniana/patología , Sinapsis/metabolismo
14.
Cells ; 9(12)2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321704

RESUMEN

Neurotrophin nerve growth factor (NGF) has been demonstrated to upregulate the gene expression of bradykinin receptor 2 (B2R) on sensory neurons, thus facilitating nociceptive signals. The aim of the present study is to investigate the involvement of B2R in the NGF mechanism of action in nonsensory neurons in vitro by using rat mixed cortical primary cultures (CNs) and mouse hippocampal slices, and in vivo in Alzheimer's disease (AD) transgenic mice (5xFAD) chronically treated with NGF. A significant NGF-mediated upregulation of B2R was demonstrated by microarray, Western blot, and immunofluorescence analysis in CNs, indicating microglial cells as the target of this modulation. The B2R involvement in the NGF mechanism of action was also demonstrated by using a selective B2R antagonist which was able to reverse the neuroprotective effect of NGF in CNs, as revealed by viability assay, and the NGF-induced long-term potentiation (LTP) in hippocampal slices. To confirm in vitro observations, B2R upregulation was observed in 5xFAD mouse brain following chronic intranasal NGF treatment. This study demonstrates for the first time that B2R is a key element in the neuroprotective activity and synaptic plasticity mediated by NGF in brain cells.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Factor de Crecimiento Nervioso/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Receptor de Bradiquinina B2/genética , Receptor de Bradiquinina B2/metabolismo , Administración Intranasal , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Supervivencia Celular , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Transgénicos , Microglía/citología , Microglía/efectos de los fármacos , Microglía/metabolismo , Factor de Crecimiento Nervioso/farmacología , Plasticidad Neuronal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Cultivo Primario de Células , Ratas , Regulación hacia Arriba
15.
Biomolecules ; 10(2)2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024191

RESUMEN

In the last decade, Nerve Growth Factor (NGF)-based clinical approaches have lacked specific and efficient Tyrosine Kinase A (TrkA) agonists for brain delivery. Nowadays, the characterization of novel small peptidomimetic is taking centre stage in preclinical studies, in order to overcome the main size-related limitation in brain delivery of NGF holoprotein for Central Nervous System (CNS) pathologies. Here we investigated the NGF mimetic properties of the human NGF 1-14 sequence (hNGF1-14) and its derivatives, by resorting to primary cholinergic and dorsal root ganglia (DRG) neurons. Briefly, we observed that: 1) hNGF1-14 peptides engage the NGF pathway through TrkA phosphorylation at tyrosine 490 (Y490), and activation of ShcC/PI3K and Plc-γ/MAPK signalling, promoting AKT-dependent survival and CREB-driven neuronal activity, as seen by levels of the immediate early gene c-Fos, of the cholinergic marker Choline Acetyltransferase (ChAT), and of Brain Derived Neurotrophic Factor (BDNF); 2) their NGF mimetic activity is lost upon selective TrkA inhibition by means of GW441756; 3) hNGF1-14 peptides are able to sustain DRG survival and differentiation in absence of NGF. Furthermore, the acetylated derivative Ac-hNGF1-14 demonstrated an optimal NGF mimetic activity in both neuronal paradigms and an electrophysiological profile similar to NGF in cholinergic neurons. Cumulatively, the findings here reported pinpoint the hNGF1-14 peptide, and in particular its acetylated derivative, as novel, specific and low molecular weight TrkA specific agonists in both CNS and PNS primary neurons.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Ganglios Espinales/metabolismo , Factor de Crecimiento Nervioso/química , Receptor trkA/agonistas , Receptor trkA/metabolismo , Proteína Transformadora 3 que Contiene Dominios de Homología 2 de Src/metabolismo , Animales , Bioensayo , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Humanos , Péptidos/química , Fosforilación , Ratas , Transducción de Señal , Tirosina/química
16.
Brain Commun ; 2(1): fcaa039, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32954296

RESUMEN

Clinical and neuropathological studies have shown that tau pathology better correlates with the severity of dementia than amyloid plaque burden, making tau an attractive target for the cure of Alzheimer's disease. We have explored whether passive immunization with the 12A12 monoclonal antibody (26-36aa of tau protein) could improve the Alzheimer's disease phenotype of two well-established mouse models, Tg2576 and 3xTg mice. 12A12 is a cleavage-specific monoclonal antibody which selectively binds the pathologically relevant neurotoxic NH226-230 fragment (i.e. NH2htau) of tau protein without cross-reacting with its full-length physiological form(s). We found out that intravenous administration of 12A12 monoclonal antibody into symptomatic (6 months old) animals: (i) reaches the hippocampus in its biologically active (antigen-binding competent) form and successfully neutralizes its target; (ii) reduces both pathological tau and amyloid precursor protein/amyloidß metabolisms involved in early disease-associated synaptic deterioration; (iii) improves episodic-like type of learning/memory skills in hippocampal-based novel object recognition and object place recognition behavioural tasks; (iv) restores the specific up-regulation of the activity-regulated cytoskeleton-associated protein involved in consolidation of experience-dependent synaptic plasticity; (v) relieves the loss of dendritic spine connectivity in pyramidal hippocampal CA1 neurons; (vi) rescues the Alzheimer's disease-related electrophysiological deficits in hippocampal long-term potentiation at the CA3-CA1 synapses; and (vii) mitigates the neuroinflammatory response (reactive gliosis). These findings indicate that the 20-22 kDa NH2-terminal tau fragment is crucial target for Alzheimer's disease therapy and prospect immunotherapy with 12A12 monoclonal antibody as safe (normal tau-preserving), beneficial approach in contrasting the early Amyloidß-dependent and independent neuropathological and cognitive alterations in affected subjects.

17.
Int J Biol Macromol ; 141: 278-289, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31470053

RESUMEN

The intrinsically disordered tau protein plays a pivotal role in the pathogenesis of Alzheimer's disease (AD) and other human tauopathies. Abnormal post-translational modifications of tau, such as truncation, are causally involved in the onset/development of these neurodegenerative diseases. In this context, the AD-relevant N-terminal fragment mapping between 26 and 44 amino acids of protein (tau26-44) is interesting, being endowed with potent neurotoxic effects in vitro and in vivo. However, the understanding of the mechanism(s) of tau26-44 toxicity is a challenging task because, similarly to the full-length tau, it does not have a unique 3D structure but exists as dynamic ensemble of conformations. Here we use Atomic Force Spectroscopy, Small Angle X-ray Scattering and Molecular Dynamics simulation to gather structural and functional information on the tau26-44. We highlight the presence, the type and the location of its temporary secondary structures and we unveil the occurrence of relevant transient tertiary conformations that could contribute to tau26-44 toxicity. Data are compared with those obtained on the biologically-inactive, reverse-sequence (tau44-26 peptide) which has the same mass, charge, aminoacidic composition as well as the same overall unfolded character of tau26-44.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos/química , Conformación Proteica , Proteínas tau/química , Enfermedad de Alzheimer , Secuencia de Aminoácidos , Animales , Humanos , Microscopía de Fuerza Atómica , Neuronas/metabolismo , Neuronas/patología , Ratas , Relación Estructura-Actividad , Tauopatías , Difracción de Rayos X , Proteínas tau/metabolismo
18.
Mol Neurobiol ; 56(1): 535-552, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29736736

RESUMEN

Basal forebrain cholinergic neurons (BFCN) are key modulators of learning and memory and are high energy-demanding neurons. Impaired neuronal metabolism and reduced insulin signaling, known as insulin resistance, has been reported in the early phase of Alzheimer's disease (AD), which has been suggested to be "Type 3 Diabetes." We hypothesized that BFCN may develop insulin resistance and their consequent failure represents one of the earliest event in AD. We found that a condition reminiscent of insulin resistance occurs in the medial septum of 3 months old 3×Tg-AD mice, reported to develop typical AD histopathology and cognitive deficits in adulthood. Further, we obtained insulin resistant BFCN by culturing them with high insulin concentrations. By means of these paradigms, we observed that nerve growth factor (NGF) reduces insulin resistance in vitro and in vivo. NGF activates the insulin receptor substrate 1 (IRS1) and rescues c-Fos expression and glucose metabolism. This effect involves binding of activated IRS1 to the NGF receptor TrkA, and is lost in presence of the specific IRS inhibitor NT157. Overall, our findings indicate that, in a well-established animal model of AD, the medial septum develops insulin resistance several months before it is detectable in the neocortex and hippocampus. Remarkably, NGF counteracts molecular alterations downstream of insulin-resistant receptor and its nasal administration restores insulin signaling in 3×Tg-AD mice by TrkA/IRS1 activation. The cross-talk between NGF and insulin pathways downstream the insulin receptor suggests novel potential therapeutic targets to slow cognitive decline in AD and diabetes-related brain insulin resistance.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/fisiología , Insulina/farmacología , Factor de Crecimiento Nervioso/farmacología , Núcleos Septales/metabolismo , Enfermedad de Alzheimer/genética , Animales , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Fosforilación/efectos de los fármacos , Ratas , Ratas Wistar , Receptor de Insulina/metabolismo , Núcleos Septales/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
20.
Cells ; 8(4)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30939824

RESUMEN

Nerve growth factor (NGF) is a protein necessary for development and maintenance of the sympathetic and sensory nervous systems. We have previously shown that the NGF N-terminus peptide NGF(1-14) is sufficient to activate TrkA signaling pathways essential for neuronal survival and to induce an increase in brain-derived neurotrophic factor (BDNF) expression. Cu2+ ions played a critical role in the modulation of the biological activity of NGF(1-14). Using computational, spectroscopic, and biochemical techniques, here we report on the ability of a newly synthesized peptide named d-NGF(1-15), which is the dimeric form of NGF(1-14), to interact with TrkA. We found that d-NGF(1-15) interacts with the TrkA-D5 domain and induces the activation of its signaling pathways. Copper binding to d-NGF(1-15) stabilizes the secondary structure of the peptides, suggesting a strengthening of the noncovalent interactions that allow for the molecular recognition of D5 domain of TrkA and the activation of the signaling pathways. Intriguingly, the signaling cascade induced by the NGF peptides ultimately involves cAMP response element-binding protein (CREB) activation and an increase in BDNF protein level, in keeping with our previous result showing an increase of BDNF mRNA. All these promising connections can pave the way for developing interesting novel drugs for neurodegenerative diseases.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cobre/farmacología , Factor de Crecimiento Nervioso/metabolismo , Secuencia de Aminoácidos , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dimerización , Endocitosis/efectos de los fármacos , Femenino , Ionóforos/farmacología , Factor de Crecimiento Nervioso/química , Células PC12 , Fenotipo , Fosforilación/efectos de los fármacos , Dominios Proteicos , Ratas , Ratas Wistar , Receptor trkA/química , Receptor trkA/metabolismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA