Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39099420

RESUMEN

A thin film of pulmonary surfactant lines the surface of the airways and alveoli where it lowers the surface tension in the peripheral lungs, preventing collapse of the bronchioles and alveoli and reducing the work of breathing. It also possesses a barrier function for maintaining the blood-gas interface of the lungs and plays an important role in innate immunity. The surfactant film covers the epithelium lining both large and small airways, forming the first line of defense between toxic airborne particles/pathogens and the lungs. Furthermore, surfactant has been shown to relax airway smooth muscle (ASM) after exposure to airway smooth muscle agonists, suggesting a more subtle function. Whether surfactant masks irritant sensory receptors or interacts with one of them is not known. The relaxant effect of surfactant on airway smooth muscle is absent in bronchial tissues denuded of an epithelial layer. Blocking of prostanoid synthesis inhibits the relaxant function of surfactant, indicating that prostanoids might be involved. Another possibility for surfactant to be active, namely through ATP-dependent potassium channels and the cAMP-regulated epithelial chloride channels (CFTR) was tested but could not be confirmed. Hence, this review discusses the mechanisms of known and potential relaxant effects of pulmonary surfactant on airway smooth muscle. This review summarizes what is known about the role of surfactant in smooth muscle physiology and explores the scientific questions and studies needed to fully understand how surfactant helps maintain the delicate balance between relaxant and constrictor needs.

2.
Lung ; 202(3): 299-315, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38684519

RESUMEN

PURPOSE: Acute respiratory distress syndrome (ARDS) is a major cause of hypoxemic respiratory failure in adults. In ARDS extensive inflammation and leakage of fluid into the alveoli lead to dysregulation of pulmonary surfactant metabolism and function. Altered surfactant synthesis, secretion, and breakdown contribute to the clinical features of decreased lung compliance and alveolar collapse. Lung function in ARDS could potentially be restored with surfactant replacement therapy, and synthetic surfactants with modified peptide analogues may better withstand inactivation in ARDS alveoli than natural surfactants. METHODS: This study aimed to investigate the activity in vitro and the bolus effect (200 mg phospholipids/kg) of synthetic surfactant CHF5633 with analogues of SP-B and SP-C, or natural surfactant Poractant alfa (Curosurf®, both preparations Chiesi Farmaceutici S.p.A.) in a severe ARDS model (the ratio of partial pressure arterial oxygen and fraction of inspired oxygen, P/F ratio ≤ 13.3 kPa) induced by hydrochloric acid instillation followed by injurious ventilation in adult New Zealand rabbits. The animals were ventilated for 4 h after surfactant treatment and the respiratory parameters, histological appearance of lung parenchyma and levels of inflammation, oxidative stress, surfactant dysfunction, and endothelial damage were evaluated. RESULTS: Both surfactant preparations yielded comparable improvements in lung function parameters, reductions in lung injury score, pro-inflammatory cytokines levels, and lung edema formation compared to untreated controls. CONCLUSIONS: This study indicates that surfactant replacement therapy with CHF5633 improves lung function and lung architecture, and attenuates inflammation in severe ARDS in adult rabbits similarly to Poractant alfa. Clinical trials have so far not yielded conclusive results, but exogenous surfactant may be a valid supportive treatment for patients with ARDS given its anti-inflammatory and lung-protective effects.


Asunto(s)
Productos Biológicos , Modelos Animales de Enfermedad , Pulmón , Estrés Oxidativo , Fosfolípidos , Proteína B Asociada a Surfactante Pulmonar , Proteína C Asociada a Surfactante Pulmonar , Surfactantes Pulmonares , Síndrome de Dificultad Respiratoria , Animales , Conejos , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/fisiopatología , Surfactantes Pulmonares/farmacología , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiopatología , Pulmón/metabolismo , Fosfolípidos/farmacología , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Proteína B Asociada a Surfactante Pulmonar/farmacología , Proteína B Asociada a Surfactante Pulmonar/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteína C Asociada a Surfactante Pulmonar/farmacología , Masculino , Líquido del Lavado Bronquioalveolar , Fragmentos de Péptidos , Fosfatidilcolinas
3.
Acta Virol ; 67(1): 3-12, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36876506

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monitoring in air traffic is important in the prevention of the virus spreading from abroad. The gold standard for SARS-CoV-2 detection is RT-qPCR; however, for early and low viral load detection, a much more sensitive method, such as droplet digital PCR (ddPCR), is required. Our first step was to developed both, ddPCR and RT-qPCR methods, for sensitive SARS-CoV-2 detection. Analysis of ten swab/saliva samples of five Covid-19 patients in different stages of disease showed positivity in 6/10 samples with RT-qPCR and 9/10 with ddPCR. We also used our RT-qPCR method for SARS-CoV-2 detection without the need of RNA extraction, obtaining results in 90-120 minutes. We analyzed 116 self-collected saliva samples from passengers and airport staff arriving from abroad. All samples were negative by RT-qPCR, while 1 was positive, using ddPCR. Lastly, we developed ddPCR assays for SARS-CoV-2 variants identification (alpha, beta, gamma, delta/kappa) that are more economically advantageous when compared to NGS. Our findings demonstrated that saliva samples can be stored at ambient temperature, as we did not observe any significant difference between a fresh sample and the same sample after 24 hours (p = 0.23), hence, saliva collection is the optimal route for sampling airplane passengers. Our results also showed that droplet digital PCR is a more suitable method for detecting virus from saliva, compared to RT-qPCR. Keywords: COVID-19; RT-PCR; ddPCR; SARS-CoV-2; nasopharyngeal swab; saliva.


Asunto(s)
Viaje en Avión , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Prueba de COVID-19 , Sensibilidad y Especificidad , Reacción en Cadena de la Polimerasa , ARN Viral/genética , Saliva/química , Manejo de Especímenes/métodos
4.
Int J Mol Sci ; 21(9)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403267

RESUMEN

This study aimed to investigate whether a selective phosphodiesterase-3 (PDE3) inhibitor olprinone can positively influence the inflammation, apoptosis, and respiratory parameters in animals with acute respiratory distress syndrome (ARDS) model induced by repetitive saline lung lavage. Adult rabbits were divided into 3 groups: ARDS without therapy (ARDS), ARDS treated with olprinone i.v. (1 mg/kg; ARDS/PDE3), and healthy ventilated controls (Control), and were oxygen-ventilated for the following 4 h. Dynamic lung-thorax compliance (Cdyn), mean airway pressure (MAP), arterial oxygen saturation (SaO2), alveolar-arterial gradient (AAG), ratio between partial pressure of oxygen in arterial blood to a fraction of inspired oxygen (PaO2/FiO2), oxygenation index (OI), and ventilation efficiency index (VEI) were evaluated every hour. Post mortem, inflammatory and oxidative markers (interleukin (IL)-6, IL-1ß, a receptor for advanced glycation end products (RAGE), IL-10, total antioxidant capacity (TAC), 3-nitrotyrosine (3NT), and malondialdehyde (MDA) and apoptosis (apoptotic index and caspase-3) were assessed in the lung tissue. Treatment with olprinone reduced the release of inflammatory mediators and markers of oxidative damage decreased apoptosis of epithelial cells and improved respiratory parameters. The results indicate a future potential of PDE3 inhibitors also in the therapy of ARDS.


Asunto(s)
Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Imidazoles/farmacología , Inflamación/prevención & control , Inhibidores de Fosfodiesterasa 3/farmacología , Piridonas/farmacología , Síndrome de Dificultad Respiratoria/prevención & control , Animales , Biomarcadores/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , Inflamación/fisiopatología , Mediadores de Inflamación/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/fisiopatología , Conejos , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/fisiopatología
5.
Int J Mol Sci ; 21(3)2020 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-32050475

RESUMEN

Alveolar epithelial type II (ATII) cells and their proper function are essential for maintaining lung integrity and homeostasis. However, they can be damaged by lipopolysaccharide (LPS) during Gram-negative bacterial infection. Thus, this study evaluated and compared the effects of LPS on short and long-term cultures of A549 cells by determining the cell viability, levels of oxidative stress and antimicrobial peptide cathelicidin LL-37 and changes in the expression of surfactant proteins (SPs). Moreover, we compared A549 cell response to LPS in the presence of different serum concentrations. Additionally, the effect of N-acetylcysteine (NAC) on LPS-induced oxidative stress as a possible treatment was determined. Our results indicate that A549 cells are relatively resistant to LPS and able to maintain integrity even at high LPS concentrations. Their response to endotoxin is partially dependent on serum concentration. NAC failed to lower LPS-induced oxidative stress in A549 cells. Finally, LPS modulates SP gene expression in A549 cells in a time dependent manner and differences between short and long-term cultures were present. Our results support the idea that long-term cultivation of A549 cells could promote a more ATII-like phenotype and thus could be a more suitable model for ATII cells, especially for in vitro studies dealing with surfactant production.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Lipopolisacáridos/metabolismo , Estrés Oxidativo , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Células A549 , Células Epiteliales Alveolares/citología , Técnicas de Cultivo de Célula , Supervivencia Celular , Humanos , Catelicidinas
6.
Molecules ; 25(19)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977392

RESUMEN

The study aimed to prove the hypothesis that exogenous surfactant and an antibiotic polymyxin B (PxB) can more effectively reduce lipopolysaccharide (LPS)-induced acute lung injury (ALI) than surfactant treatment alone, and to evaluate the effect of this treatment on the gene expression of surfactant proteins (SPs). Anesthetized rats were intratracheally instilled with different doses of LPS to induce ALI. Animals with LPS 500 µg/kg have been treated with exogenous surfactant (poractant alfa, Curosurf®, 50 mg PL/kg b.w.) or surfactant with PxB 1% w.w. (PSUR + PxB) and mechanically ventilated for 5 hrs. LPS at 500 µg/kg increased lung edema, oxidative stress, and the levels of proinflammatory mediators in lung tissue and bronchoalveolar lavage fluid (BALF). PSUR reduced lung edema and oxidative stress in the lungs and IL-6 in BALF. This effect was further potentiated by PxB added to PSUR. Exogenous surfactant enhanced the gene expression of SP-A, SP-B, and SP-C, however, gene expression for all SPs was reduced after treatment with PSUR + PxB. In mechanically ventilated rats with LPS-induced ALI, the positive effect of exogenous surfactant on inflammation and oxidative stress was potentiated with PxB. Due to the tendency for reduced SPs gene expression after surfactant/PxB treatment topical use of PxB should be considered with caution.


Asunto(s)
Homeostasis/efectos de los fármacos , Lipopolisacáridos/efectos adversos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Polimixina B/farmacología , Respiración Artificial , Tensoactivos/farmacología , Animales , Antibacterianos/farmacología , Biomarcadores/metabolismo , Citocinas/metabolismo , Interacciones Farmacológicas , Regulación de la Expresión Génica/efectos de los fármacos , Recuento de Leucocitos , Pulmón/citología , Pulmón/inmunología , Estrés Oxidativo/efectos de los fármacos , Ratas , Porcinos
7.
Int J Mol Sci ; 20(4)2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30769918

RESUMEN

The main function of the lungs is oxygen transport from the atmosphere into the blood circulation, while it is necessary to keep the pulmonary tissue relatively free of pathogens. This is a difficult task because the respiratory system is constantly exposed to harmful substances entering the lungs by inhalation or via the blood stream. Individual types of lung cells are equipped with the mechanisms that maintain pulmonary homeostasis. Because of the clinical significance of acute respiratory distress syndrome (ARDS) the article refers to the physiological role of alveolar epithelial cells type I and II, endothelial cells, alveolar macrophages, and fibroblasts. However, all these cells can be damaged by lipopolysaccharide (LPS) which can reach the airspaces as the major component of the outer membrane of Gram-negative bacteria, and lead to local and systemic inflammation and toxicity. We also highlight a negative effect of LPS on lung cells related to alveolar-capillary barrier and their response to LPS exposure. Additionally, we describe the molecular mechanism of LPS signal transduction pathway in lung cells.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Lipopolisacáridos/toxicidad , Síndrome de Dificultad Respiratoria/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Capilares/efectos de los fármacos , Capilares/patología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Oxígeno/metabolismo , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/patología , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/patología , Transducción de Señal/genética
8.
Molecules ; 24(5)2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30841517

RESUMEN

This study aimed to evaluate the molecular background of N-acetylcysteine (NAC) and recombinant human superoxide dismutase (rhSOD) antioxidant action when combined with exogenous surfactant in the treatment of meconium aspiration syndrome (MAS), considering redox signalling a principal part of cell response to meconium. Young New Zealand rabbits were instilled with meconium suspension (Mec) and treated by surfactant alone (Surf) or surfactant in combination with i.v. NAC (Surf + NAC) or i.t. rhSOD (Surf + SOD), and oxygen-ventilated for 5 h. Dynamic lung-thorax compliance, mean airway pressure, PaO2/FiO2 and ventilation efficiency index were evaluated every hour; post mortem, inflammatory and oxidative markers (advanced oxidation protein products, total antioxidant capacity, hydroxynonenal (HNE), p38 mitogen activated protein kinase, caspase 3, thromboxane, endothelin-1 and secretory phospholipase A2) were assessed in pulmonary tissue homogenates. rhSOD addition to surfactant improved significantly, but transiently, gas exchange and reduced levels of inflammatory and oxidative molecules with higher impact; Surf + NAC had stronger effect only on HNE formation, and duration of treatment efficacy in respiratory parameters. In both antioxidants, it seems that targeting reactive oxygen species may be strong supporting factor in surfactant treatment of MAS due to redox sensitivity of many intracellular pathways triggered by meconium.


Asunto(s)
Acetilcisteína/farmacología , Proteínas Recombinantes/farmacología , Superóxido Dismutasa/farmacología , Tensoactivos/farmacología , Animales , Apoptosis , Biomarcadores , Modelos Animales de Enfermedad , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/fisiopatología , Rendimiento Pulmonar/efectos de los fármacos , Síndrome de Aspiración de Meconio/tratamiento farmacológico , Síndrome de Aspiración de Meconio/etiología , Síndrome de Aspiración de Meconio/metabolismo , Síndrome de Aspiración de Meconio/fisiopatología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Conejos , Especies Reactivas de Oxígeno/metabolismo , Pruebas de Función Respiratoria
9.
Exp Lung Res ; 44(1): 40-50, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29324051

RESUMEN

AIM: Meconium aspiration syndrome (MAS) is life-threatening respiratory failure of newborns which can be treated by exogenous surfactant. In response to meconium, increased levels of chemokine IL-8 (CXCL8) stimulate massive neutrophil infiltration of the lungs. Local accumulation and activation of neutrophils, on-going inflammation, lung edema, and oxidative damage contribute to inactivation of endogenous and therapeutically given surfactants. Therefore, we have hypothesized that addition of monoclonal anti-IL-8 antibody into exogenous surfactant can mitigate the neutrophil-induced local injury and the secondary surfactant inactivation and may finally result in improvement of respiratory functions. METHODS: New Zealand rabbits with intratracheal meconium-induced respiratory failure (meconium 25 mg/ml, 4 ml/kg) were divided into three groups: untreated (M), surfactant-treated (M + S), and treated with combination of surfactant and anti-IL-8 antibody (M + S + anti-IL-8). Surfactant therapy consisted of two lung lavages with diluted porcine surfactant Curosurf (10 ml/kg, 5 mg phospholipids (PL)/ml) followed by undiluted Curosurf (100 mg PL/kg) delivered by means of asymmetric high-frequency jet ventilation (f. 300/min, Ti 20%). In M + S + anti-IL-8 group, anti-IL-8 antibody (100 µg/kg) was added directly to Curosurf dose. Animals were oxygen-ventilated for additional 5 h, respiratory parameters were measured regularly. Subsequently, cell counts in bronchoalveolar lavage fluid (BAL), lung edema formation, oxidative damage, levels of interleukins (IL)-1ß and IL-6 in the lung homogenate were evaluated. RESULTS: Surfactant instillation significantly improved lung function. Addition of anti-IL-8 to surfactant further improved gas exchange and ventilation efficiency and had longer-lasting effect than surfactant-only therapy. Combined treatment showed the trend to reduce neutrophil count in BAL fluid, local oxidative damage, and levels of IL-1ß and IL-6 more effectively than surfactant-alone, however, these differences were not significant. CONCLUSION: Addition of anti-IL-8 antibody to surfactant could potentiate the efficacy of Curosurf on the gas exchange in experimental model of MAS.


Asunto(s)
Anticuerpos/farmacología , Interleucina-8/inmunología , Síndrome de Aspiración de Meconio/tratamiento farmacológico , Surfactantes Pulmonares/uso terapéutico , Insuficiencia Respiratoria/etiología , Animales , Anticuerpos/uso terapéutico , Sinergismo Farmacológico , Intercambio Gaseoso Pulmonar/efectos de los fármacos , Surfactantes Pulmonares/farmacología , Conejos
10.
BMC Pregnancy Childbirth ; 18(1): 264, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29945544

RESUMEN

BACKGROUND: Early postnatal period is characterized by dramatic adaptation changes of cardiovascular and respiratory systems in newborns. There is still insufficient data regarding maturation of autonomic regulatory mechanisms in neonates early after delivery. Aim of this study was to analyze cardiac autonomic regulation in newborns within the first few postnatal days in relation to different modes of delivery using time and spectral heart rate variability analysis. METHODS: Eutrophic healthy term newborns (n = 46) were divided into three groups according to the delivery mode: vaginal delivery (VD group; n = 16), vaginal delivery with epidural analgesia (EDA group; n = 16), and caesarean section under general anesthesia (CS group; n = 14). Heart rate variability (HRV), blood pressure (BP), and blood oxygen saturation (SpO2) were measured within the first two hours after birth and on the third to fourth postnatal day. HRV parameters were evaluated in the time domain (RR intervals, mean square of successive differences - MSSD) and frequency domain (total spectral power - TP, absolute and relative low and high frequency powers). RESULTS: The HRV spectral analysis showed significantly higher relative power of the high-frequency band (HF%) in the VD group compared to the CS group early after delivery (p = 0.002). HRV parameters and BP significantly increased on the third to fourth postnatal day in all groups (p < 0.05). No significant differences in basic characteristics, BP and SpO2 were identified between groups during both measurements. CONCLUSIONS: HRV analysis revealed higher cardiovagal modulation in spontaneously born newborns without analgesia compared to neonates born by caesarean section. It could represent a potential pathomechanism that leads to discrete abnormal neurocardiac regulation associated with higher risk for worsened postnatal adaptation of cardiovascular system in surgically delivered neonates.


Asunto(s)
Parto Obstétrico/estadística & datos numéricos , Frecuencia Cardíaca/fisiología , Adaptación Fisiológica/fisiología , Presión Sanguínea/fisiología , Determinación de la Presión Sanguínea/métodos , Electrocardiografía/métodos , Femenino , Humanos , Recién Nacido , Masculino , Oximetría/métodos , Estudios Prospectivos , Telemetría/métodos
11.
Int J Mol Sci ; 19(7)2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29976869

RESUMEN

After inhalation, lipopolysaccharide (LPS) molecules interfere with a pulmonary surfactant, a unique mixture of phospholipids (PLs) and specific proteins that decreases surface tension at the air⁻liquid interphase. We evaluated the behaviour of a clinically used modified porcine pulmonary surfactant (PSUR) in the presence of LPS in a dynamic system mimicking the respiratory cycle. Polymyxin B (PxB), a cyclic amphipathic antibiotic, is able to bind to LPS and to PSUR membranes. We investigated the effect of PxB on the surface properties of the PSUR/LPS system. Particular attention was paid to mechanisms underlying the structural changes in surface-reducing features. The function and structure of the porcine surfactant mixed with LPS and PxB were tested with a pulsating bubble surfactometer, optical microscopy, and small- and wide-angle X-ray scattering (SAXS/WAXS). Only 1% LPS (w/w to surfactant PLs) prevented the PSUR from reaching the necessary low surface tension during area compression. LPS bound to the lipid bilayer of PSUR and disturbed its lamellar structure by swelling. The structural changes were attributed to the surface charge unbalance of the lipid bilayers due to LPS insertion. PxB acts as an inhibitor of structural disarrangement induced by LPS and restores original lamellar packing, as detected by polarised light microscopy and SAXS.


Asunto(s)
Escherichia coli/patogenicidad , Lipopolisacáridos/química , Polimixina B/farmacología , Surfactantes Pulmonares/química , Surfactantes Pulmonares/metabolismo , Análisis de Varianza , Animales , Lipopolisacáridos/metabolismo , Fosfolípidos/química , Fosfolípidos/metabolismo , Polimixina B/química , Alveolos Pulmonares/química , Alveolos Pulmonares/metabolismo , Dispersión del Ángulo Pequeño , Tensión Superficial , Porcinos , Difracción de Rayos X
12.
Mol Cell Biochem ; 434(1-2): 61-73, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28432557

RESUMEN

Normobaric hyperoxia is applied for the treatment of a wide variety of diseases and clinical conditions related to ischemia or hypoxia, but it can increase the risk of tissue damage and its efficiency is controversial. In the present study, we analyzed cardiac mitochondrial proteome derived from guinea pigs after 60 h exposure to 100% molecular oxygen (NBO) or O2 enriched with oxygen cation (NBO+). Two-dimensional gel electrophoresis followed by MALDI-TOF/TOF mass spectrometry identified twenty-two different proteins (among them ten nonmitochondrial) that were overexpressed in NBO and/or NBO+ group. Identified proteins were mainly involved in cellular energy metabolism (tricarboxylic acid cycle, oxidative phosphorylation, glycolysis), cardioprotection against stress, control of mitochondrial function, muscle contraction, and oxygen transport. These findings support the viewpoint that hyperoxia is associated with cellular stress and suggest complex adaptive responses which probably contribute to maintain or improve intracellular ATP levels and contractile function of cardiomyocytes. In addition, the results suggest that hyperoxia-induced cellular stress may be partially attenuated by utilization of NBO+ treatment.


Asunto(s)
Hiperoxia/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Miocardio/metabolismo , Proteómica , Animales , Peso Corporal , Electroforesis en Gel Bidimensional , Cobayas , Tamaño de los Órganos , Oxígeno/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
Pediatr Res ; 79(4): 514-21, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26679157

RESUMEN

This review summarizes neonatal meconium aspiration syndrome in light of meconium-induced inflammation and inflammatory surfactant inactivation, related to both endogenous and therapeutic exogenous surfactant. The wide effect of meconium on surfactant properties is divided into three points. Direct effect of meconium on surfactant properties refers mainly to fragmentation of dipalmitoylphosphatidylcholine and other surfactant phospholipids together with cleavage of surfactant proteins. Initiation of inflammatory response due to activation of receptors by yet unspecified compounds involves complement and Toll-like receptor activation. A possible role of lung collectins, surfactant proteins A and D, which can exert both pro- and anti-inflammatory reactions, is discussed. Initiation of inflammatory response by specified compounds in meconium reflects inflammatory functioning of cytokines, bile acids, and phospholipases contained in meconium. Unifying sketch of many interconnections in all these actions aims at providing integrated picture of inflammatory surfactant inactivation.


Asunto(s)
Inflamación/etiología , Meconio , Tensoactivos , Humanos , Recién Nacido
14.
Inhal Toxicol ; 26(7): 419-25, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24862976

RESUMEN

OBJECTIVE: The study was designed to determine whether smoking affects CT score, bacterial colonization of the upper airways and distribution of inflammatory cells in nasal mucosa in patients with chronic rhinosinusitis. MATERIAL AND METHODS: Sixty-four patients were enrolled in the prospective study. We characterized differences in CT score, rate of revision surgery, differences in bacterial colonization in the middle nasal meatus and distribution of inflammatory cells in nasal tissue in smoking and non-smoking patients with chronic rhinosinusitis with nasal polyps (CRSwNP), chronic rhinosinusitis without nasal polyps (CRSsNP) and control group. RESULTS: Direct tobacco use was associated with significantly more severe form of the disease according to the preoperative CT investigation of paranasal sinuses using Lund-Mackay scoring system in both CRSwNP (p = 0.035) and CRSsNP (p = 0.023) groups. More intense colonization of upper-respiratory tract by the pathogenic bacteria in smokers compared to non-smokers was found. Non-pathogenic bacterial flora was more often present in non-smokers compared to smokers. Plasma cells and lymphocytes were the most numerous cells in nasal tissue in all three groups. In smokers with presence of pathogenic bacteria in middle nasal meatus there was stronger neutrophil (p = 0.002) and macrophage infiltration (p = 0.044) in CRSsNP group. CONCLUSION: Tobacco smoke exposure is related to higher Lund-Mackay score, increased colonization by pathogenic bacteria and lower incidence of commensals in middle nasal meatus, but does not influence cell distribution in nasal mucosa in patients with chronic rhinosinusitis.


Asunto(s)
Infecciones Bacterianas/inmunología , Inmunidad Innata , Mucosa Nasal/inmunología , Infecciones del Sistema Respiratorio/inmunología , Rinitis/inmunología , Sinusitis/inmunología , Fumar/efectos adversos , Adulto , Anciano , Infecciones Bacterianas/microbiología , Endoscopía , Bacterias Gramnegativas/inmunología , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Gramnegativas/patogenicidad , Bacterias Grampositivas/inmunología , Bacterias Grampositivas/aislamiento & purificación , Bacterias Grampositivas/patogenicidad , Hospitales Universitarios , Humanos , Persona de Mediana Edad , Cavidad Nasal/diagnóstico por imagen , Cavidad Nasal/inmunología , Cavidad Nasal/microbiología , Cavidad Nasal/cirugía , Mucosa Nasal/diagnóstico por imagen , Mucosa Nasal/microbiología , Mucosa Nasal/cirugía , Senos Paranasales/diagnóstico por imagen , Senos Paranasales/inmunología , Senos Paranasales/microbiología , Senos Paranasales/cirugía , Estudios Prospectivos , Reoperación , Infecciones del Sistema Respiratorio/microbiología , Rinitis/diagnóstico por imagen , Rinitis/microbiología , Rinitis/cirugía , Sinusitis/diagnóstico por imagen , Sinusitis/microbiología , Sinusitis/cirugía , Eslovaquia , Tomografía Computarizada por Rayos X , Virulencia , Adulto Joven
15.
Artículo en Inglés | MEDLINE | ID: mdl-38604653

RESUMEN

OBJECTIVE: Regarding the use of lung ultrasound (LU) in neonatal intensive care units (NICUs) across Europe, to assess how widely it is used, for what indications and how its implementation might be improved. DESIGN AND INTERVENTION: International online survey. RESULTS: Replies were received from 560 NICUs in 24 countries between January and May 2023. LU uptake varied considerably (20%-98% of NICUs) between countries. In 428 units (76%), LU was used for clinical indications, while 34 units (6%) only used it for research purposes. One-third of units had <2 years of experience, and only 71 units (13%) had >5 years of experience. LU was mainly performed by neonatologists. LU was most frequently used to diagnose respiratory diseases (68%), to evaluate an infant experiencing acute clinical deterioration (53%) and to guide surfactant treatment (39%). The main pathologies diagnosed by LU were pleural effusion, pneumothorax, transient tachypnoea of the newborn and respiratory distress syndrome. The main barriers for implementation were lack of experience with technical aspects and/or image interpretation. Most units indicated that specific courses and an international guideline on neonatal LU could promote uptake of this technique. CONCLUSIONS: Although LU has been adopted in neonatal care in most European countries, the uptake is highly variable. The main indications are diagnosis of lung disease, evaluation of acute clinical deterioration and guidance of surfactant. Implementation may be improved by developing courses and publishing an international guideline.

16.
J Inflamm (Lond) ; 20(1): 10, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927675

RESUMEN

Acute respiratory distress syndrome (ARDS) is a common complication of critical illness characterized by lung inflammation, epithelial and endothelial dysfunction, alveolar-capillary leakage, and worsening respiratory failure. The present study aimed to investigate the anti-inflammatory effects of non-selective phosphodiesterase (PDE) inhibitor aminophylline. New Zealand white rabbits were randomly divided into 3 groups: animals with respiratory failure defined as PaO2/FiO2 ratio (P/F) below < 26.7 kPa, and induced by saline lung lavage (ARDS), animals with ARDS treated with intravenous aminophylline (1 mg/kg; ARDS/AMINO), and healthy ventilated controls (Control). All animals were oxygen ventilated for an additional 4 h and respiratory parameters were recorded regularly. Post mortem, the lung tissue was evaluated for oedema formation, markers of inflammation (tumor necrosis factor, TNFα, interleukin (IL)-1ß, -6, -8, -10, -13, -18), markers of epithelial damage (receptor for advanced glycation end products, RAGE) and endothelial injury (sphingosine 1-phosphate, S1P), oxidative damage (thiobarbituric acid reactive substances, TBARS, 3-nitrotyrosine, 3NT, total antioxidant capacity, TAC). Aminophylline therapy decreased the levels of pro-inflammatory cytokines, markers of epithelial and endothelial injury, oxidative modifications in lung tissue, reduced lung oedema, and improved lung function parameters compared to untreated ARDS animals. In conclusion, non-selective PDE inhibitor aminophylline showed a significant anti-inflammatory activity suggesting a potential of this drug to be a valuable component of ARDS therapy.

17.
Respir Physiol Neurobiol ; 316: 104138, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37579929

RESUMEN

Accumulation of reactive oxygen species during hyperoxia together with secondary bacteria-induced inflammation leads to lung damage in ventilated critically ill patients. Antioxidant N-acetylcysteine (NAC) in combination with surfactant may improve lung function. We compared the efficacy of NAC combined with surfactant in the double-hit model of lung injury. Bacterial lipopolysaccharide (LPS) instilled intratracheally and hyperoxia were used to induce lung injury in Wistar rats. Animals were mechanically ventilated and treated intravenously with NAC alone or in combination with intratracheal surfactant (poractant alfa; PSUR+NAC). Control received saline. Lung functions, inflammatory markers, oxidative damage, total white blood cell (WBC) count and lung oedema were evaluated during 4 hrs. Administration of NAC increased total antioxidant capacity (TAC) and decreased IL-6. This effect was potentiated by the combined administration of surfactant and NAC. In addition, PSUR+NAC reduced the levels of TNFα, IL-1ß, and TAC compared to NAC only and improved lung injury score. The combination of exogenous surfactant with NAC suppresses lung inflammation and oxidative stress in the experimental double-hit model of lung injury.


Asunto(s)
Hiperoxia , Lesión Pulmonar , Surfactantes Pulmonares , Síndrome de Dificultad Respiratoria , Ratas , Animales , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Tensoactivos , Roedores , Ratas Wistar , Pulmón , Surfactantes Pulmonares/farmacología
18.
Transl Res ; 262: 60-74, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37499744

RESUMEN

Respiratory distress syndrome (RDS) in premature infants is caused by insufficient amounts of endogenous lung surfactant and is efficiently treated with replacement therapy using animal-derived surfactant preparations. On the other hand, adult/acute RDS (ARDS) occurs secondary to for example, sepsis, aspiration of gastric contents, and multitrauma and is caused by alveolar endothelial damage, leakage of plasma components into the airspaces and inhibition of surfactant activity. Instillation of surfactant preparations in ARDS has so far resulted in very limited treatment effects, partly due to inactivation of the delivered surfactants in the airspace. Here, we develop a combined surfactant protein B (SP-B) and SP-C peptide analogue (Combo) that can be efficiently expressed and purified from Escherichia coli without any solubility or purification tag. NMR spectroscopy shows that Combo peptide forms α-helices both in organic solvents and in lipid micelles, which coincide with the helical regions described for the isolated SP-B and SP-C parts. Artificial Combo surfactant composed of synthetic dipalmitoylphosphatidylcholine:palmitoyloleoylphosphatidylglycerol, 1:1, mixed with 3 weights % relative to total phospholipids of Combo peptide efficiently improves tidal volumes and lung gas volumes at end-expiration in a premature rabbit fetus model of RDS. Combo surfactant also improves oxygenation and respiratory parameters and lowers cytokine release in an acid instillation-induced ARDS adult rabbit model. Combo surfactant is markedly more resistant to inhibition by albumin and fibrinogen than a natural-derived surfactant in clinical use for the treatment of RDS. These features of Combo surfactant make it attractive for the development of novel therapies against human ARDS.


Asunto(s)
Surfactantes Pulmonares , Síndrome de Dificultad Respiratoria del Recién Nacido , Síndrome de Dificultad Respiratoria , Recién Nacido , Animales , Femenino , Conejos , Adulto , Humanos , Síndrome de Dificultad Respiratoria del Recién Nacido/tratamiento farmacológico , Surfactantes Pulmonares/farmacología , Surfactantes Pulmonares/uso terapéutico , Surfactantes Pulmonares/química , Tensoactivos/uso terapéutico , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/metabolismo , Péptidos/farmacología , Péptidos/química
19.
Front Public Health ; 11: 1116636, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960362

RESUMEN

Introduction: Coronavirus SARS-CoV-2 is a causative agent responsible for the current global pandemic situation known as COVID-19. Clinical manifestations of COVID-19 include a wide range of symptoms from mild (i.e., cough, fever, dyspnea) to severe pneumonia-like respiratory symptoms. SARS-CoV-2 has been demonstrated to be detectable in the stool of COVID-19 patients. Waste-based epidemiology (WBE) has been shown as a promising approach for early detection and monitoring of SARS-CoV-2 in the local population performed via collection, isolation, and detection of viral pathogens from environmental sources. Methods: In order to select the optimal protocol for monitoring the COVID-19 epidemiological situation in region Turiec, Slovakia, we (1) compared methods for SARS-CoV-2 separation and isolation, including virus precipitation by polyethylene glycol (PEG), virus purification via ultrafiltration (Vivaspin®) and subsequent isolation by NucleoSpin RNA Virus kit (Macherey-Nagel), and direct isolation from wastewater (Zymo Environ Water RNA Kit); (2) evaluated the impact of water freezing on SARS- CoV-2 separation, isolation, and detection; (3) evaluated the role of wastewater filtration on virus stability; and (4) determined appropriate methods including reverse transcription-droplet digital PCR (RT-ddPCR) and real-time quantitative polymerase chain reaction (RT-qPCR) (targeting the same genes, i.e., RdRp and gene E) for quantitative detection of SARS-CoV-2 in wastewater samples. Results: (1) Usage of Zymo Environ Water RNA Kit provided superior quality of isolated RNA in comparison with both ultracentrifugation and PEG precipitation. (2) Freezing of wastewater samples significantly reduces the RNA yield. (3) Filtering is counterproductive when Zymo Environ Water RNA Kit is used. (4) According to the specificity and sensitivity, the RT-ddPCR outperforms RT-qPCR. Discussion: The results of our study suggest that WBE is a valuable early warning alert and represents a non-invasive approach to monitor viral pathogens, thus protects public health on a regional and national level. In addition, we have shown that the sensitivity of testing the samples with a nearer detection limit can be improved by selecting the appropriate combination of enrichment, isolation, and detection methods.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , SARS-CoV-2/genética , ARN Viral , Aguas Residuales , Reacción en Cadena de la Polimerasa
20.
Pediatr Res ; 72(3): 262-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22691953

RESUMEN

BACKGROUND: Plasma proteins are known to interfere with pulmonary surfactant. Studies have proven the hypothesis that fibrinogen preserves exogenous surfactant subjected to long-term surface area cycling. METHODS: The exogenous surfactant Curosurf was subjected to long-term surface area cycling without or with fibrinogen (ratio 2:1 w/w) and was tested by captive bubble surfactometer and on newborn premature rabbits. RESULTS: Surface tension increased in Curosurf (80 mg/ml) samples without fibrinogen after 6-12 d of cycling. In samples with fibrinogen the cycling time had no effect on surface tension. Addition of fibrinogen to surfactant prevented lipid peroxidation. Lung gas volumes of animals with noncycled Curosurf or Curosurf cycled with fibrinogen for 6 d were comparable and higher than in rabbits with Curosurf cycled without fibrinogen. Alveolar volume density was higher in groups with noncycled Curosurf or Curosurf cycled with fibrinogen than in Curosurf cycled without fibrinogen (both P < 0.001). CONCLUSION: The effect of fibrinogen on pulmonary surfactant cycled at 37 °C depends both on surfactant concentration and cycling time. At high phospholipid concentration used in clinical practice fibrinogen has a protective effect on biophysical and physiological properties of natural modified surfactant subjected to surface area cycling. This effect is partially mediated by reduction in lipid peroxidation.


Asunto(s)
Modelos Animales de Enfermedad , Fibrinógeno/química , Surfactantes Pulmonares/metabolismo , Síndrome de Dificultad Respiratoria del Recién Nacido/fisiopatología , Animales , Humanos , Recién Nacido , Surfactantes Pulmonares/química , Conejos , Tensión Superficial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA