Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Cell ; 83(23): 4239-4254.e10, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065062

RESUMEN

A common mRNA modification is 5-methylcytosine (m5C), whose role in gene-transcript processing and cancer remains unclear. Here, we identify serine/arginine-rich splicing factor 2 (SRSF2) as a reader of m5C and impaired SRSF2 m5C binding as a potential contributor to leukemogenesis. Structurally, we identify residues involved in m5C recognition and the impact of the prevalent leukemia-associated mutation SRSF2P95H. We show that SRSF2 binding and m5C colocalize within transcripts. Furthermore, knocking down the m5C writer NSUN2 decreases mRNA m5C, reduces SRSF2 binding, and alters RNA splicing. We also show that the SRSF2P95H mutation impairs the ability of the protein to read m5C-marked mRNA, notably reducing its binding to key leukemia-related transcripts in leukemic cells. In leukemia patients, low NSUN2 expression leads to mRNA m5C hypomethylation and, combined with SRSF2P95H, predicts poor outcomes. Altogether, we highlight an unrecognized mechanistic link between epitranscriptomics and a key oncogenesis driver.


Asunto(s)
Leucemia , Síndromes Mielodisplásicos , Neoplasias , Metilación de ARN , Factores de Empalme Serina-Arginina , Humanos , Leucemia/genética , Síndromes Mielodisplásicos/genética , Neoplasias/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Factores de Empalme Serina-Arginina/genética , Metilación de ARN/genética
2.
Cell Mol Life Sci ; 81(1): 229, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780787

RESUMEN

RNA modifications are essential for the establishment of cellular identity. Although increasing evidence indicates that RNA modifications regulate the innate immune response, their role in monocyte-to-macrophage differentiation and polarisation is unclear. While m6A has been widely studied, other RNA modifications, including 5 hmC, remain poorly characterised. We profiled m6A and 5 hmC epitranscriptomes, transcriptomes, translatomes and proteomes of monocytes and macrophages at rest and pro- and anti-inflammatory states. Transcriptome-wide mapping of m6A and 5 hmC reveals enrichment of m6A and/or 5 hmC on specific categories of transcripts essential for macrophage differentiation. Our analyses indicate that m6A and 5 hmC modifications are present in transcripts with critical functions in pro- and anti-inflammatory macrophages. Notably, we also discover the co-occurrence of m6A and 5 hmC on alternatively-spliced isoforms and/or opposing ends of the untranslated regions (UTR) of mRNAs with key roles in macrophage biology. In specific examples, RNA 5 hmC controls the decay of transcripts independently of m6A. This study provides (i) a comprehensive dataset to interrogate the role of RNA modifications in a plastic system (ii) a resource for exploring different layers of gene expression regulation in the context of human monocyte-to-macrophage differentiation and polarisation, (iii) new insights into RNA modifications as central regulators of effector cells in innate immunity.


Asunto(s)
Diferenciación Celular , Macrófagos , Monocitos , Transcriptoma , Macrófagos/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Diferenciación Celular/genética , Humanos , Monocitos/metabolismo , Monocitos/citología , Regulación de la Expresión Génica , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Polaridad Celular/genética , ARN/genética , ARN/metabolismo , Adenosina/metabolismo
3.
EMBO J ; 32(5): 645-55, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23353889

RESUMEN

TET proteins convert 5-methylcytosine to 5-hydroxymethylcytosine, an emerging dynamic epigenetic state of DNA that can influence transcription. Evidence has linked TET1 function to epigenetic repression complexes, yet mechanistic information, especially for the TET2 and TET3 proteins, remains limited. Here, we show a direct interaction of TET2 and TET3 with O-GlcNAc transferase (OGT). OGT does not appear to influence hmC activity, rather TET2 and TET3 promote OGT activity. TET2/3-OGT co-localize on chromatin at active promoters enriched for H3K4me3 and reduction of either TET2/3 or OGT activity results in a direct decrease in H3K4me3 and concomitant decreased transcription. Further, we show that Host Cell Factor 1 (HCF1), a component of the H3K4 methyltransferase SET1/COMPASS complex, is a specific GlcNAcylation target of TET2/3-OGT, and modification of HCF1 is important for the integrity of SET1/COMPASS. Additionally, we find both TET proteins and OGT activity promote binding of the SET1/COMPASS H3K4 methyltransferase, SETD1A, to chromatin. Finally, studies in Tet2 knockout mouse bone marrow tissue extend and support the data as decreases are observed of global GlcNAcylation and also of H3K4me3, notably at several key regulators of haematopoiesis. Together, our results unveil a step-wise model, involving TET-OGT interactions, promotion of GlcNAcylation, and influence on H3K4me3 via SET1/COMPASS, highlighting a novel means by which TETs may induce transcriptional activation.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transcripción Genética , 5-Metilcitosina/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Proliferación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Islas de CpG , Citosina/análogos & derivados , Citosina/metabolismo , Epigénesis Genética , Glicosilación , Histonas/metabolismo , Factor C1 de la Célula Huésped/metabolismo , Humanos , Inmunoprecipitación , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética
4.
EMBO J ; 31(6): 1405-26, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22293752

RESUMEN

In addition to genetic predisposition, environmental and lifestyle factors contribute to the pathogenesis of type 2 diabetes (T2D). Epigenetic changes may provide the link for translating environmental exposures into pathological mechanisms. In this study, we performed the first comprehensive DNA methylation profiling in pancreatic islets from T2D and non-diabetic donors. We uncovered 276 CpG loci affiliated to promoters of 254 genes displaying significant differential DNA methylation in diabetic islets. These methylation changes were not present in blood cells from T2D individuals nor were they experimentally induced in non-diabetic islets by exposure to high glucose. For a subgroup of the differentially methylated genes, concordant transcriptional changes were present. Functional annotation of the aberrantly methylated genes and RNAi experiments highlighted pathways implicated in ß-cell survival and function; some are implicated in cellular dysfunction while others facilitate adaptation to stressors. Together, our findings offer new insights into the intricate mechanisms of T2D pathogenesis, underscore the important involvement of epigenetic dysregulation in diabetic islets and may advance our understanding of T2D aetiology.


Asunto(s)
Metilación de ADN , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Islotes Pancreáticos/metabolismo , Anciano , Animales , Línea Celular , Islas de CpG , Dermatoglifia del ADN/métodos , Epigénesis Genética , Sitios Genéticos , Glucosa/metabolismo , Humanos , Regiones Promotoras Genéticas , Ratas , Transcripción Genética
5.
Brief Bioinform ; 15(6): 929-41, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23990268

RESUMEN

Infinium HumanMethylation450 beadarray is a popular technology to explore DNA methylomes in health and disease, and there is a current explosion in the use of this technique. Despite experience acquired from gene expression microarrays, analyzing Infinium Methylation arrays appeared more complex than initially thought and several difficulties have been encountered, as those arrays display specific features that need to be taken into consideration during data processing. Here, we review several issues that have been highlighted by the scientific community, and we present an overview of the general data processing scheme and an evaluation of the different normalization methods available to date to guide the 450K users in their analysis and data interpretation.


Asunto(s)
Metilación de ADN , Biología Computacional , Islas de CpG , Interpretación Estadística de Datos , Genoma Humano , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , Sondas de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Programas Informáticos
6.
Nucleic Acids Res ; 42(13): 8285-96, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24957603

RESUMEN

DNA methylation is a central epigenetic modification in mammals, with essential roles in development and disease. De novo DNA methyltransferases establish DNA methylation patterns in specific regions within the genome by mechanisms that remain poorly understood. Here we show that protein citrullination by peptidylarginine deiminase 4 (PADI4) affects the function of the DNA methyltransferase DNMT3A. We found that DNMT3A and PADI4 interact, from overexpressed as well as untransfected cells, and associate with each other's enzymatic activity. Both in vitro and in vivo, PADI4 was shown to citrullinate DNMT3A. We identified a sequence upstream of the PWWP domain of DNMT3A as its primary region citrullinated by PADI4. Increasing the PADI4 level caused the DNMT3A protein level to increase as well, provided that the PADI4 was catalytically active, and RNAi targeting PADI4 caused reduced DNMT3A levels. Accordingly, pulse-chase experiments revealed stabilization of the DNMT3A protein by catalytically active PADI4. Citrullination and increased expression of native DNMT3A by PADI4 were confirmed in PADI4-knockout MEFs. Finally, we showed that PADI4 overexpression increases DNA methyltransferase activity in a catalytic-dependent manner and use bisulfite pyrosequencing to demonstrate that PADI4 knockdown causes significant reduction of CpG methylation at the p21 promoter, a known target of DNMT3A and PADI4. Protein citrullination by PADI4 thus emerges as a novel mechanism for controlling a de novo DNA methyltransferase. Our results shed new light on how post-translational modifications might contribute to shaping the genomic CpG methylation landscape.


Asunto(s)
Citrulina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Hidrolasas/metabolismo , Animales , Línea Celular , ADN Metiltransferasa 3A , Estabilidad de Enzimas , Humanos , Ratones , Ratones Noqueados , Estructura Terciaria de Proteína , Arginina Deiminasa Proteína-Tipo 4 , Desiminasas de la Arginina Proteica
7.
Nucleic Acids Res ; 40(15): 7219-32, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22581778

RESUMEN

Histone demethylation has important roles in regulating gene expression and forms part of the epigenetic memory system that regulates cell fate and identity by still poorly understood mechanisms. Here, we examined the role of histone demethylase Kdm3a during cell differentiation, showing that Kdm3a is essential for differentiation into parietal endoderm-like (PE) cells in the F9 mouse embryonal carcinoma model. We identified a number of target genes regulated by Kdm3a during endoderm differentiation; among the most dysregulated were the three developmental master regulators Dab2, Pdlim4 and FoxQ1. We show that dysregulation of the expression of these genes correlates with Kdm3a H3K9me2 demethylase activity. We further demonstrate that either Dab2 depletion or Kdm3a depletion prevents F9 cells from fully differentiating into PE cells, but that ectopic expression of Dab2 cannot compensate for Kdm3a knockdown; Dab2 is thus necessary, but insufficient on its own, to promote complete terminal differentiation. We conclude that Kdm3a plays a crucial role in progression through PE differentiation by regulating expression of a set of endoderm differentiation master genes. The emergence of Kdm3a as a key modulator of cell fate decision strengthens the view that histone demethylases are essential to cell differentiation.


Asunto(s)
Diferenciación Celular/genética , Regulación de la Expresión Génica , Histona Demetilasas con Dominio de Jumonji/fisiología , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Células Madre de Carcinoma Embrionario , Endodermo/citología , Factores de Transcripción Forkhead/genética , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/genética , Proteínas con Dominio LIM/genética , Ratones , Proteínas de Microfilamentos/genética , Interferencia de ARN
8.
Sci Data ; 11(1): 252, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418823

RESUMEN

RNA modifications have emerged as central regulators of gene expression programs. Amongst RNA modifications are N6-methyladenosine (m6A) and RNA 5-hydroxymethylcytosine (5hmC). While m6A is established as a versatile regulator of RNA metabolism, the functions of RNA 5hmC are unclear. Despite some evidence linking RNA modifications to immunity, their implications in gene expression control in macrophage development and functions remain unclear. Here we present a multi-omics dataset capturing different layers of the gene expression programs driving macrophage differentiation and polarisation. We obtained mRNA-Seq, m6A-IP-Seq, 5hmC-IP-Seq, Polyribo-Seq and LC-MS/MS data from monocytes and resting-, pro- and anti-inflammatory-like macrophages. We present technical validation showing high quality and correlation between samples for all datasets, and evidence of biological consistency of modelled macrophages at the transcriptomic, epitranscriptomic, translational and proteomic levels. This multi-omics dataset provides a resource for the study of RNA m6A and 5hmC in the context of macrophage biology and spans the gene expression process from transcripts to proteins.


Asunto(s)
Macrófagos , Multiómica , ARN , Humanos , Cromatografía Liquida , Macrófagos/citología , ARN/metabolismo , Espectrometría de Masas en Tándem , Diferenciación Celular , Polaridad Celular
9.
J Exp Clin Cancer Res ; 42(1): 78, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36998085

RESUMEN

BACKGROUND: Aerobic glycolysis, also known as the Warburg effect, is predominantly upregulated in a variety of solid tumors, including breast cancer. We have previously reported that methylglyoxal (MG), a very reactive by-product of glycolysis, unexpectedly enhanced the metastatic potential in triple negative breast cancer (TNBC) cells. MG and MG-derived glycation products have been associated with various diseases, such as diabetes, neurodegenerative disorders, and cancer. Glyoxalase 1 (GLO1) exerts an anti-glycation defense by detoxifying MG to D-lactate. METHODS: Here, we used our validated model consisting of stable GLO1 depletion to induce MG stress in TNBC cells. Using genome-scale DNA methylation analysis, we report that this condition resulted in DNA hypermethylation in TNBC cells and xenografts. RESULTS: GLO1-depleted breast cancer cells showed elevated expression of DNMT3B methyltransferase and significant loss of metastasis-related tumor suppressor genes, as assessed using integrated analysis of methylome and transcriptome data. Interestingly, MG scavengers revealed to be as potent as typical DNA demethylating agents at triggering the re-expression of representative silenced genes. Importantly, we delineated an epigenomic MG signature that effectively stratified TNBC patients based on survival. CONCLUSION: This study emphasizes the importance of MG oncometabolite, occurring downstream of the Warburg effect, as a novel epigenetic regulator and proposes MG scavengers to reverse altered patterns of gene expression in TNBC.


Asunto(s)
Metilación de ADN , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Piruvaldehído/metabolismo , Línea Celular Tumoral , Transcriptoma , Regulación Neoplásica de la Expresión Génica
10.
Epigenetics ; 17(13): 2434-2454, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36354000

RESUMEN

Illumina Infinium DNA Methylation (5mC) arrays are a popular technology for low-cost, high-throughput, genome-scale measurement of 5mC distribution, especially in cancer and other complex diseases. After the success of its HumanMethylation450 array (450k), Illumina released the MethylationEPIC array (850k) featuring increased coverage of enhancers. Despite the widespread use of 850k, analysis of the corresponding data remains suboptimal: it still relies mostly on Illumina's default annotation, which underestimates enhancerss and long noncoding RNAs. Results: We have thus developed an approach, based on the ENCODE and LNCipedia databases, which greatly improves upon Illumina's default annotation of enhancers and long noncoding transcripts. We compared the re-annotated 850k with both 450k and reduced-representation bisulphite sequencing (RRBS), another high-throughput 5mC profiling technology. We found 850k to cover at least three times as many enhancers and long noncoding RNAs as either 450k or RRBS. We further investigated the reproducibility of the three technologies, applying various normalization methods to the 850k data. Most of these methods reduced variability to a level below that of RRBS data. We then used 850k with our new annotation and normalization to profile 5mC changes in breast cancer biopsies. 850k highlighted aberrant enhancer methylation as the predominant feature, in agreement with previous reports. Our study provides an updated processing approach for 850k data, based on refined probe annotation and normalization, allowing for improved analysis of methylation at enhancers and long noncoding RNA genes. Our findings will help to further advance understanding of the DNA methylome in health and disease.


Asunto(s)
Metilación de ADN , ARN Largo no Codificante , Humanos , Islas de CpG , ARN Largo no Codificante/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Benchmarking , Reproducibilidad de los Resultados
11.
Epigenetics ; 17(4): 422-443, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33960278

RESUMEN

Ten-Eleven Translocation (TET) proteins convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) leading to a dynamic epigenetic state of DNA that can influence transcription and chromatin organization. While TET proteins interact with complexes involved in transcriptional repression and activation, the overall understanding of the molecular mechanisms involved in TET-mediated regulation of gene expression still remains limited. Here, we show that TET proteins interact with the chromatin remodelling protein lymphoid-specific helicase (LSH/HELLS) in vivo and in vitro. In mouse embryonic fibroblasts (MEFs) and embryonic stem cells (ESCs) knock out of Lsh leads to a significant reduction of 5-hydroxymethylation amount in the DNA. Whole genome sequencing of 5hmC in wild-type versus Lsh knock-out MEFs and ESCs showed that in absence of Lsh, some regions of the genome gain 5hmC while others lose it, with mild correlation with gene expression changes. We further show that differentially hydroxymethylated regions did not completely overlap with differentially methylated regions indicating that changes in 5hmC distribution upon Lsh knock-out are not a direct consequence of 5mC decrease. Altogether, our results suggest that LSH, which interacts with TET proteins, contributes to the regulation of 5hmC levels and distribution in MEFs and ESCs.


Asunto(s)
Ensamble y Desensamble de Cromatina , Metilación de ADN , 5-Metilcitosina/metabolismo , Animales , Citosina/metabolismo , ADN/metabolismo , ADN Helicasas/metabolismo , Fibroblastos/metabolismo , Genoma , Ratones
12.
Nat Cell Biol ; 24(7): 1114-1128, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35817961

RESUMEN

The mammalian heart arises from various populations of Mesp1-expressing cardiovascular progenitors (CPs) that are specified during the early stages of gastrulation. Mesp1 is a transcription factor that acts as a master regulator of CP specification and differentiation. However, how Mesp1 regulates the chromatin landscape of nascent mesodermal cells to define the temporal and spatial patterning of the distinct populations of CPs remains unknown. Here, by combining ChIP-seq, RNA-seq and ATAC-seq during mouse pluripotent stem cell differentiation, we defined the dynamic remodelling of the chromatin landscape mediated by Mesp1. We identified different enhancers that are temporally regulated to erase the pluripotent state and specify the pools of CPs that mediate heart development. We identified Zic2 and Zic3 as essential cofactors that act with Mesp1 to regulate its transcription-factor activity at key mesodermal enhancers, thereby regulating the chromatin remodelling and gene expression associated with the specification of the different populations of CPs in vivo. Our study identifies the dynamics of the chromatin landscape and enhancer remodelling associated with temporal patterning of early mesodermal cells into the distinct populations of CPs that mediate heart development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Cromatina , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Corazón , Proteínas de Homeodominio/metabolismo , Mamíferos/metabolismo , Mesodermo , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Nat Cancer ; 2(6): 611-628, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-35121941

RESUMEN

Post-transcriptional modifications of RNA constitute an emerging regulatory layer of gene expression. The demethylase fat mass- and obesity-associated protein (FTO), an eraser of N6-methyladenosine (m6A), has been shown to play a role in cancer, but its contribution to tumor progression and the underlying mechanisms remain unclear. Here, we report widespread FTO downregulation in epithelial cancers associated with increased invasion, metastasis and worse clinical outcome. Both in vitro and in vivo, FTO silencing promotes cancer growth, cell motility and invasion. In human-derived tumor xenografts (PDXs), FTO pharmacological inhibition favors tumorigenesis. Mechanistically, we demonstrate that FTO depletion elicits an epithelial-to-mesenchymal transition (EMT) program through increased m6A and altered 3'-end processing of key mRNAs along the Wnt signaling cascade. Accordingly, FTO knockdown acts via EMT to sensitize mouse xenografts to Wnt inhibition. We thus identify FTO as a key regulator, across epithelial cancers, of Wnt-triggered EMT and tumor progression and reveal a therapeutically exploitable vulnerability of FTO-low tumors.


Asunto(s)
Neoplasias Glandulares y Epiteliales , ARN , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Animales , Regulación hacia Abajo/genética , Transición Epitelial-Mesenquimal/genética , Humanos , Ratones
14.
Nat Commun ; 11(1): 4956, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009383

RESUMEN

Tet-enzyme-mediated 5-hydroxymethylation of cytosines in DNA plays a crucial role in mouse embryonic stem cells (ESCs). In RNA also, 5-hydroxymethylcytosine (5hmC) has recently been evidenced, but its physiological roles are still largely unknown. Here we show the contribution and function of this mark in mouse ESCs and differentiating embryoid bodies. Transcriptome-wide mapping in ESCs reveals hundreds of messenger RNAs marked by 5hmC at sites characterized by a defined unique consensus sequence and particular features. During differentiation a large number of transcripts, including many encoding key pluripotency-related factors (such as Eed and Jarid2), show decreased cytosine hydroxymethylation. Using Tet-knockout ESCs, we find Tet enzymes to be partly responsible for deposition of 5hmC in mRNA. A transcriptome-wide search further reveals mRNA targets to which Tet1 and Tet2 bind, at sites showing a topology similar to that of 5hmC sites. Tet-mediated RNA hydroxymethylation is found to reduce the stability of crucial pluripotency-promoting transcripts. We propose that RNA cytosine 5-hydroxymethylation by Tets is a mark of transcriptome flexibility, inextricably linked to the balance between pluripotency and lineage commitment.


Asunto(s)
5-Metilcitosina/análogos & derivados , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN/metabolismo , 5-Metilcitosina/metabolismo , Animales , Especificidad de Anticuerpos/inmunología , Secuencia de Bases , Dioxigenasas , Cuerpos Embrioides/metabolismo , Ratones , Modelos Biológicos , Células Madre Pluripotentes/metabolismo , Unión Proteica , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética
15.
Nat Commun ; 10(1): 3306, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31341159

RESUMEN

Memory CD8+ T cells have the ability to provide lifelong immunity against pathogens. Although memory features generally arise after challenge with a foreign antigen, naïve CD8 single positive (SP) thymocytes may acquire phenotypic and functional characteristics of memory cells in response to cytokines such as interleukin-4. This process is associated with the induction of the T-box transcription factor Eomesodermin (EOMES). However, the underlying molecular mechanisms remain ill-defined. Using epigenomic profiling, we show that these innate memory CD8SP cells acquire only a portion of the active enhancer repertoire of conventional memory cells. This reprograming is secondary to EOMES recruitment, mostly to RUNX3-bound enhancers. Furthermore, EOMES is found within chromatin-associated complexes containing BRG1 and promotes the recruitment of this chromatin remodelling factor. Also, the in vivo acquisition of EOMES-dependent program is BRG1-dependent. In conclusion, our results support a strong epigenetic basis for the EOMES-driven establishment of CD8+ T cell innate memory program.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/fisiología , ADN Helicasas/fisiología , Epigénesis Genética , Memoria Inmunológica , Proteínas Nucleares/fisiología , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/fisiología , Animales , Subunidad alfa 3 del Factor de Unión al Sitio Principal/inmunología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , ADN Helicasas/inmunología , ADN Helicasas/metabolismo , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Nucleares/inmunología , Proteínas Nucleares/metabolismo , Proteínas de Dominio T Box/genética , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo
16.
Commun Biol ; 2: 472, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31872076

RESUMEN

Monocytes play a major role in the defense against pathogens. They are rapidly mobilized to inflamed sites where they exert both proinflammatory and regulatory effector functions. It is still poorly understood how this dynamic and exceptionally plastic system is controlled at the molecular level. Herein, we evaluated the differentiation process that occurs in Ly6Chi monocytes during oral infection by Toxoplasma gondii. Flow cytometry and single-cell analysis revealed distinct activation status and gene expression profiles in the bone marrow, the spleen and the lamina propria of infected mice. We provide further evidence that acquisition of effector functions, such as the capacity to produce interleukin-27, is accompanied by distinct waves of epigenetic programming, highlighting a role for STAT1/IRF1 in the bone marrow and AP-1/NF-κB in the periphery. This work broadens our understanding of the molecular events that occur in vivo during monocyte differentiation in response to inflammatory cues.


Asunto(s)
Diferenciación Celular/inmunología , Monocitos/inmunología , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Toxoplasmosis/parasitología , Animales , Reprogramación Celular/genética , Biología Computacional/métodos , Epigénesis Genética , Perfilación de la Expresión Génica , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Monocitos/citología , Monocitos/metabolismo , Análisis de la Célula Individual , Toxoplasmosis/genética , Toxoplasmosis/metabolismo
17.
Cancer Res ; 79(3): 482-494, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30538121

RESUMEN

Although numerous epigenetic aberrancies accumulate in melanoma, their contribution to initiation and progression remain unclear. The epigenetic mark 5-hydroxymethylcytosine (5hmC), generated through TET-mediated DNA modification, is now referred to as the sixth base of DNA and has recently been reported as a potential biomarker for multiple types of cancer. Loss of 5hmC is an epigenetic hallmark of melanoma, but whether a decrease in 5hmc levels contributes directly to pathogenesis or whether it merely results from disease progression-associated epigenetic remodeling remains to be established. Here, we show that NRAS-driven melanomagenesis in mice is accompanied by an overall decrease in 5hmC and specific 5hmC gains in selected gene bodies. Strikingly, genetic ablation of Tet2 in mice cooperated with oncogenic NRASQ61K to promote melanoma initiation while suppressing specific gains in 5hmC. We conclude that TET2 acts as a barrier to melanoma initiation and progression, partly by promoting 5hmC gains in specific gene bodies. SIGNIFICANCE: This work emphasizes the importance of epigenome plasticity in cancer development and highlights the involvement of druggable epigenetic factors in cancer.


Asunto(s)
5-Metilcitosina/análogos & derivados , Proteínas de Unión al ADN/genética , Melanoma Experimental/genética , Proteínas Proto-Oncogénicas/genética , Neoplasias Cutáneas/genética , 5-Metilcitosina/metabolismo , Animales , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Progresión de la Enfermedad , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Ratones Transgénicos , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Ratas
18.
Oncotarget ; 9(45): 27605-27629, 2018 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-29963224

RESUMEN

Colorectal cancer (CRC) is one of the most common cancers in humans and a leading cause of cancer-related deaths worldwide. As in the case of other cancers, CRC heterogeneity leads to a wide range of clinical outcomes and complicates therapy. Over the years, multiple factors have emerged as markers of CRC heterogeneity, improving tumor classification and selection of therapeutic strategies. Understanding the molecular mechanisms underlying this heterogeneity remains a major challenge. A considerable research effort is therefore devoted to identifying additional features of colorectal tumors, in order to better understand CRC etiology and to multiply therapeutic avenues. Recently, long noncoding RNAs (lncRNAs) have emerged as important players in physiological and pathological processes, including CRC. Here we looked for lncRNAs that might contribute to the various colorectal tumor phenotypes. We thus monitored the expression of 4898 lncRNA genes across 566 CRC samples and identified 282 lncRNAs reflecting CRC heterogeneity. We then inferred potential functions of these lncRNAs. Our results highlight lncRNAs that may participate in the major processes altered in distinct CRC cases, such as WNT/ß-catenin and TGF-ß signaling, immunity, the epithelial-to-mesenchymal transition (EMT), and angiogenesis. For several candidates, we provide experimental evidence supporting our functional predictions that they may be involved in the cell cycle or the EMT. Overall, our work identifies lncRNAs associated with key CRC characteristics and provides insights into their respective functions. Our findings constitute a further step towards understanding the contribution of lncRNAs to CRC heterogeneity. They may open new therapeutic opportunities.

19.
Sci Adv ; 4(6): eaap7309, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29938218

RESUMEN

Ten-eleven translocation enzymes (TET1, TET2, and TET3), which induce DNA demethylation and gene regulation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), are often down-regulated in cancer. We uncover, in basal-like breast cancer (BLBC), genome-wide 5hmC changes related to TET1 regulation. We further demonstrate that TET1 repression is associated with high expression of immune markers and high infiltration by immune cells. We identify in BLBC tissues an anticorrelation between TET1 expression and the major immunoregulator family nuclear factor κB (NF-κB). In vitro and in mice, TET1 is down-regulated in breast cancer cells upon NF-κB activation through binding of p65 to its consensus sequence in the TET1 promoter. We lastly show that these findings extend to other cancer types, including melanoma, lung, and thyroid cancers. Together, our data suggest a novel mode of regulation for TET1 in cancer and highlight a new paradigm in which the immune system can influence cancer cell epigenetics.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Inmunidad , Oxigenasas de Función Mixta/genética , FN-kappa B/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/genética , Inmunidad Adaptativa , Biomarcadores , Metilación de ADN , Epigénesis Genética , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata , Neoplasias/patología , Neoplasias Basocelulares/etiología , Neoplasias Basocelulares/metabolismo , Neoplasias Basocelulares/patología , Regiones Promotoras Genéticas , Unión Proteica
20.
Elife ; 72018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29488879

RESUMEN

Cytotoxic CD4 (CD4CTX) T cells are emerging as an important component of antiviral and antitumor immunity, but the molecular basis of their development remains poorly understood. In the context of human cytomegalovirus infection, a significant proportion of CD4 T cells displays cytotoxic functions. We observed that the transcriptional program of these cells was enriched in CD8 T cell lineage genes despite the absence of ThPOK downregulation. We further show that establishment of CD4CTX-specific transcriptional and epigenetic programs occurred in a stepwise fashion along the Th1-differentiation pathway. In vitro, prolonged activation of naive CD4 T cells in presence of Th1 polarizing cytokines led to the acquisition of perforin-dependent cytotoxic activity. This process was dependent on the Th1 transcription factor Runx3 and was limited by the sustained expression of ThPOK. This work elucidates the molecular program of human CD4CTX T cells and identifies potential targets for immunotherapy against viral infections and cancer.


Asunto(s)
Diferenciación Celular , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Infecciones por Citomegalovirus/inmunología , Proteínas de Unión al ADN/metabolismo , Subgrupos de Linfocitos T/inmunología , Linfocitos T Citotóxicos/inmunología , Células TH1/inmunología , Factores de Transcripción/metabolismo , Adulto , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA