RESUMEN
PURPOSE: Ependymoma (EPN) accounts for approximately 10% of all primary central nervous system (CNS) tumors in children and in most cases, chemotherapy is ineffective and treatment remains challenging. We investigated molecular alterations, with a potential prognostic marker and therapeutic target in EPNs of childhood and adolescence, using a next-generation sequencing (NGS) panel specific for pediatric neoplasms. METHODS: We selected 61 samples with initial diagnosis of EPN from patients treated at Pediatric Oncology Institute-GRAACC/UNIFESP. All samples were divided according to the anatomical compartment of the CNS - 42 posterior fossa (PF), 14 supratentorial (ST), and five spinal (SP). NGS was performed to identify somatic genetic variants in tumor samples using the Oncomine Childhood Cancer Research Assay® (OCCRA®) panel, from Thermo Fisher Scientific®. RESULTS: Genetic variants were identified in 24 of 61 (39.3%) tumors and over 90% of all variants were pathogenic or likely pathogenic. The most commonly variants detected were in CIC, ASXL1, and JAK2 genes and have not been reported in EPN yet. MN1-BEND2 fusion, alteration recently described in a new CNS tumor type, was identified in one ST sample that was reclassified as astroblastoma. Additionally, YAP1-MAMLD1 fusion, a rare event associated with good outcome in ST-EPN, was observed in two patients diagnosed under 2 years old. CONCLUSIONS: Molecular profiling by the OCCRA® panel showed novel alterations in pediatric and adolescent EPNs, which highlights the clinical importance in identifying genetic variants for patients' prognosis and therapeutic orientation.
Asunto(s)
Ependimoma , Secuenciación de Nucleótidos de Alto Rendimiento , Adolescente , Neoplasias del Sistema Nervioso Central/genética , Niño , Preescolar , Ependimoma/genética , Humanos , Lactante , Neoplasias Supratentoriales , Factores de TranscripciónRESUMEN
PURPOSE: In neurogenesis, ASPM (abnormal spindle-like microcephaly-associated) gene is expressed mainly in the ventricular zone of posterior fossa and is the major determinant in the cerebral cortex. Besides its role in embryonic development, ASPM overexpression promotes tumor growth, including central nervous system (CNS) tumors. This study aims to investigate ASPM expression levels in most frequent posterior fossa brain tumors of childhood and adolescence: medulloblastoma (MB), ependymoma (EPN), and astrocytoma (AS), correlating them with clinicopathological characteristics and tumor solid portion size. METHODS: Quantitative reverse transcription (qRT-PCR) is used to quantify ASPM mRNA levels in 80 pre-treatment tumor samples: 28 MB, 22 EPN, and 30 AS. The tumor solid portion size was determined by IOP-GRAACC Diagnostic Imaging Center. We correlated these findings with clinicopathological characteristics and tumor solid portion size. RESULTS: Our results demonstrated that ASPM gene was overexpressed in MB (p = 0.007) and EPN (p = 0.0260) samples. ASPM high expression was significantly associated to MB samples from patients with worse overall survival (p = 0.0123) and death due to disease progression (p = 0.0039). Interestingly, two patients with AS progressed toward higher grade showed ASPM overexpression (p = 0.0046). No correlation was found between the tumor solid portion size and ASPM expression levels in MB (p = 0.1154 and r = - 0.4825) and EPN (p = 0.1108 and r = - 0.3495) samples. CONCLUSION: Taking in account that ASPM gene has several functions to support cell proliferation, as mitotic defects and premature differentiation, we suggest that its overexpression, presumably, plays a critical role in disease progression of posterior fossa brain tumors of childhood and adolescence.
Asunto(s)
Neoplasias Cerebelosas , Neoplasias Infratentoriales , Microcefalia , Adolescente , Expresión Génica , Humanos , Neoplasias Infratentoriales/diagnóstico por imagen , Neoplasias Infratentoriales/genética , Proteínas del Tejido Nervioso/genéticaRESUMEN
Survival rates for osteosarcoma, the most common primary bone cancer, have changed little over the past three decades and are particularly low for patients with metastatic disease. We conducted a multi-institutional genome-wide association study (GWAS) to identify germline genetic variants associated with overall survival in 632 patients with osteosarcoma, including 523 patients of European ancestry and 109 from Brazil. We conducted a time-to-event analysis and estimated hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards models, with and without adjustment for metastatic disease. The results were combined across the European and Brazilian case sets using a random-effects meta-analysis. The strongest association after meta-analysis was for rs3765555 at 9p24.1, which was inversely associated with overall survival (HR = 1.76; 95% CI 1.41-2.18, p = 4.84 × 10-7 ). After imputation across this region, the combined analysis identified two SNPs that reached genome-wide significance. The strongest single association was with rs55933544 (HR = 1.9; 95% CI 1.5-2.4; p = 1.3 × 10-8 ), which localizes to the GLDC gene, adjacent to the IL33 gene and was consistent across both the European and Brazilian case sets. Using publicly available data, the risk allele was associated with lower expression of IL33 and low expression of IL33 was associated with poor survival in an independent set of patients with osteosarcoma. In conclusion, we have identified the GLDC/IL33 locus on chromosome 9p24.1 as associated with overall survival in patients with osteosarcoma. Further studies are needed to confirm this association and shed light on the biological underpinnings of this susceptibility locus.
Asunto(s)
Neoplasias Óseas/genética , Neoplasias Óseas/mortalidad , Interleucina-33/genética , Osteosarcoma/genética , Osteosarcoma/mortalidad , Adulto , Alelos , Brasil , Femenino , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Modelos de Riesgos Proporcionales , Tasa de Supervivencia , Población Blanca/genéticaRESUMEN
PURPOSE: Gliomas represent the most frequent central nervous system (CNS) tumors in children and adolescents. However, therapeutic strategies for these patients, based on tumor molecular profile, are still limited compared to the wide range of treatment options for the adult population. We investigated molecular alterations, with a potential prognostic marker and therapeutic target in gliomas of childhood and adolescence using the next-generation sequencing (NGS) strategy. METHODS: We selected 95 samples with initial diagnosis of glioma from patients treated at Pediatric Oncology Institute-GRAACC/UNIFESP. All samples were categorized according to the 2021 World Health Organization Classification of Tumors of the CNS, which included 39 low-grade gliomas (LGGs) and 56 high-grade gliomas (HGGs). Four HGG samples were classified as congenital glioblastoma (cGBM). NGS was performed to identify somatic genetic variants in tumor samples using the Oncomine Childhood Cancer Research Assay® (OCCRA®) panel, from Thermo Fisher Scientific®. RESULTS: Genetic variants were identified in 76 of 95 (80%) tumors. In HGGs, the most common molecular alteration detected was H3F3A c.83A > T variant (H3.3 K27M) and co-occurring mutations in ATRX, TP53, PDGFRA, MET, and MYC genes were also frequently observed. One HGG sample was reclassified as supratentorial ependymoma ZFTA-fusion positive after NGS was performed. In LGGs, four KIAA1549-BRAF fusion transcripts were detected and this alteration was the most recurrent genetic event and favorable prognostic factor identified. Additionally, genetic variants in ALK and NTRK genes, which provide potential targets for therapy with Food and Drug Administration-approved drugs, were identified in two different cases of cGBM that were classified as infant-type hemispheric glioma, a newly recognized subgroup of pediatric HGG. CONCLUSION: Molecular profiling by the OCCRA® panel comprehensively addressed the most relevant genetic variants in gliomas of childhood and adolescence, as these tumors have specific patterns of molecular alterations, outcomes, and effectiveness to therapies.
Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Variación Genética/genética , Glioma/genética , Adolescente , Neoplasias Encefálicas/patología , Niño , Preescolar , Variaciones en el Número de Copia de ADN/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Glioma/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/genética , Humanos , Lactante , Recién Nacido , Masculino , Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas B-raf/genética , Estudios RetrospectivosRESUMEN
The ultrarare hepatoblastoma (HB) is the most common pediatric liver cancer. HB risk is related to a few rare syndromes, and the molecular bases remain elusive for most cases. We investigated the burden of rare damaging germline variants in 30 Brazilian patients with HB and the presence of additional clinical signs. A high frequency of prematurity (20%) and birth defects (37%), especially craniofacial (17%, including craniosynostosis) and kidney (7%) anomalies, was observed. Putative pathogenic or likely pathogenic monoallelic germline variants mapped to 10 cancer predisposition genes (CPGs: APC, CHEK2, DROSHA, ERCC5, FAH, MSH2, MUTYH, RPS19, TGFBR2 and VHL) were detected in 33% of the patients, only 40% of them with a family history of cancer. These findings showed a predominance of CPGs with a known link to gastrointestinal/colorectal and renal cancer risk. A remarkable feature was an enrichment of rare damaging variants affecting different classes of DNA repair genes, particularly those known as Fanconi anemia genes. Moreover, several potentially deleterious variants mapped to genes impacting liver functions were disclosed. To our knowledge, this is the largest assessment of rare germline variants in HB patients to date, contributing to elucidate the genetic architecture of HB risk.
RESUMEN
Hepatoblastoma is a very rare embryonal liver cancer supposed to arise from the impairment of hepatocyte differentiation during embryogenesis. In this study, we investigated by exome sequencing the burden of somatic mutations in a cohort of 10 hepatoblastomas, including a congenital case. Our data disclosed a low mutational background and pointed out to a novel set of candidate genes for hepatoblastoma biology, which were shown to impact gene expression levels. Only three recurrently mutated genes were detected: CTNNB1 and two novel candidates, CX3CL1 and CEP164. A relevant finding was the identification of a recurrent mutation (A235G) in two hepatoblastomas at the CX3CL1 gene; evaluation of RNA and protein expression revealed upregulation of CX3CL1 in tumors. The analysis was replicated in two independents cohorts, substantiating that an activation of the CX3CL1/CX3CR1 pathway occurs in hepatoblastomas. In inflammatory regions of hepatoblastomas, CX3CL1/CX3CR1 were not detected in the infiltrated lymphocytes, in which they should be expressed in normal conditions, whereas necrotic regions exhibited negative labeling in tumor cells, but strongly positive infiltrated lymphocytes. Altogether, these data suggested that CX3CL1/CX3CR1 upregulation may be a common feature of hepatoblastomas, potentially related to chemotherapy response and progression. In addition, three mutational signatures were identified in hepatoblastomas, two of them with predominance of either the COSMIC signatures 1 and 6, found in all cancer types, or the COSMIC signature 29, mostly related to tobacco chewing habit; a third novel mutational signature presented an unspecific pattern with an increase of C>A mutations. Overall, we present here novel candidate genes for hepatoblastoma, with evidence that CX3CL1/CX3CR1 chemokine signaling pathway is likely involved with progression, besides reporting specific mutational signatures.
RESUMEN
BACKGROUND: Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. RESULTS: We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. CONCLUSIONS: We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. METHODS: In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients (n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model.
RESUMEN
We report two pediatric patients with unclassified myelodysplastic syndrome (MDS) by the French-American-British (FAB) group. Both cases had clinical and hematological peculiarities, which had not been described yet. The cytogenetic alterations were 4q deletion and the Philadelphia (Ph) chromosome which appeared at different moments of the disease. One patient showed the Ph chromosome at disease transformation and the other at diagnosis. The different breakpoints at 4q and the presence of Ph could be a marker of this form of MDS. The association of clinical and hematological findings suggests the possibility of a new group of pediatric MDS.