Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 436(7051): 704-8, 2005 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16079847

RESUMEN

Neuronal polarization occurs shortly after mitosis. In neurons differentiating in vitro, axon formation follows the segregation of growth-promoting activities to only one of the multiple neurites that form after mitosis. It is unresolved whether such spatial restriction makes use of an intrinsic program, like during C. elegans embryo polarization, or is extrinsic and cue-mediated, as in migratory cells. Here we show that in hippocampal neurons in vitro, the axon consistently arises from the neurite that develops first after mitosis. Centrosomes, the Golgi apparatus and endosomes cluster together close to the area where the first neurite will form, which is in turn opposite from the plane of the last mitotic division. We show that the polarized activities of these organelles are necessary and sufficient for neuronal polarization: (1) polarized microtubule polymerization and membrane transport precedes first neurite formation, (2) neurons with more than one centrosome sprout more than one axon and (3) suppression of centrosome-mediated functions precludes polarization. We conclude that asymmetric centrosome-mediated dynamics in the early post-mitotic stage instruct neuronal polarity, implying that pre-mitotic mechanisms with a role in division orientation may in turn participate in this event.


Asunto(s)
Polaridad Celular , Centrosoma/metabolismo , Neuronas/citología , Animales , Axones/metabolismo , Transporte Biológico , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Señales (Psicología) , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Hipocampo/citología , Microtúbulos/metabolismo , Mitosis , Neuritas/metabolismo , Ratas
2.
EMBO Mol Med ; 6(3): 398-413, 2014 03.
Artículo en Inglés | MEDLINE | ID: mdl-24448491

RESUMEN

Understanding the role of lipids in synapses and the aberrant molecular mechanisms causing the cognitive deficits that characterize most lipidosis is necessary to develop therapies for these diseases. Here we describe sphingomyelin (SM) as a key modulator of the dendritic spine actin cytoskeleton. We show that increased SM levels in neurons of acid sphingomyelinase knock out mice (ASMko), which mimic Niemann Pick disease type A (NPA), result in reduced spine number and size and low levels of filamentous actin. Mechanistically, SM accumulation decreases the levels of metabotropic glutamate receptors type I (mGluR1/5) at the synaptic membrane impairing membrane attachment and activity of RhoA and its effectors ROCK and ProfilinIIa. Pharmacological enhancement of the neutral sphingomyelinase rescues the aberrant molecular and morphological phenotypes in vitro and in vivo and improves motor and memory deficits in ASMko mice. Altogether, these data demonstrate the influence of SM and its catabolic enzymes in dendritic spine physiology and contribute to our understanding of the cognitive deficits of NPA patients, opening new perspectives for therapeutic interventions.


Asunto(s)
Espinas Dendríticas/efectos de los fármacos , Enfermedad de Niemann-Pick Tipo A/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo A/patología , Citoesqueleto de Actina/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Espinas Dendríticas/metabolismo , Dexametasona/farmacología , Modelos Animales de Enfermedad , Femenino , Memoria a Corto Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Enfermedad de Niemann-Pick Tipo A/metabolismo , Esfingomielina Fosfodiesterasa/deficiencia , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielinas/toxicidad
3.
PLoS One ; 4(4): e5310, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19390577

RESUMEN

Consensus exists that lipids must play key functions in synaptic activity but precise mechanistic information is limited. Acid sphingomyelinase knockout mice (ASMko) are a suitable model to address the role of sphingolipids in synaptic regulation as they recapitulate a mental retardation syndrome, Niemann Pick disease type A (NPA), and their neurons have altered levels of sphingomyelin (SM) and its derivatives. Electrophysiological recordings showed that ASMko hippocampi have increased paired-pulse facilitation and post-tetanic potentiation. Consistently, electron microscopy revealed reduced number of docked vesicles. Biochemical analysis of ASMko synaptic membranes unveiled higher amounts of SM and sphingosine (Se) and enhanced interaction of the docking molecules Munc18 and syntaxin1. In vitro reconstitution assays demonstrated that Se changes syntaxin1 conformation enhancing its interaction with Munc18. Moreover, Se reduces vesicle docking in primary neurons and increases paired-pulse facilitation when added to wt hippocampal slices. These data provide with a novel mechanism for synaptic vesicle control by sphingolipids and could explain cognitive deficits of NPA patients.


Asunto(s)
Proteínas Munc18/metabolismo , Esfingosina/farmacología , Vesículas Sinápticas/metabolismo , Sintaxina 1/metabolismo , Animales , Embrión de Mamíferos/metabolismo , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Membranas Sinápticas/metabolismo , Transmisión Sináptica
4.
Mol Biol Cell ; 19(2): 509-22, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18032586

RESUMEN

Acid sphingomyelinase (ASM) converts sphingomyelin (SM) into ceramide. Mutations in the ASM gene cause the mental retardation syndrome Niemann Pick type A (NPA), characterized as a lysosomal disorder because of the SM accumulation in these organelles. We here report that neurons from mice lacking ASM (ASMKO) present increased plasma membrane SM levels evident in detergent-resistant membranes. Paralleling this lipidic alteration, GPI-anchored proteins show an aberrant distribution in both axons and dendrites instead of the axonal enrichment observed in neurons from wild-type mice. Trafficking analysis suggests that this is due to defective internalization from dendrites. Increasing the SM content in wild-type neurons mimics these defects, whereas SM reduction in ASMKO neurons prevents their occurrence. Moreover, expression of active RhoA, which membrane attachment is affected by SM accumulation, rescues internalization rates in ASMKO neurons. These data unveil an unexpected role for ASM in neuronal plasma membrane organization and trafficking providing insight on the molecular mechanisms involved. They also suggest that deficiencies in such processes could be key pathological events in NPA disease.


Asunto(s)
Membrana Celular/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Neuronas/citología , Neuronas/enzimología , Esfingomielina Fosfodiesterasa/deficiencia , Animales , Membrana Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Detergentes/farmacología , Endocitosis/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Exocitosis/efectos de los fármacos , Gangliósido G(M1)/metabolismo , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Priones/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielinas/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
5.
Mol Cell Neurosci ; 30(3): 304-15, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16139509

RESUMEN

Defects in cellular localization and trafficking seem to facilitate the conversion of PrP(C) into the disease-associated form, PrP(Sc). Still, it is not clear to which membrane compartments PrP(C) localizes in hippocampal neurons a population most affected in the prion disease. We here show that in developing hippocampal neurons in culture PrP(C) is equally distributed to all neurites yet enriched in growth cones. By contrast, in fully mature neurons PrP(C) is restricted to axons. The axonal distribution in mature stages is paralleled by the increased partitioning of PrP(C) into detergent-resistant cholesterol-sphingolipid-rich domains (DRMs). Consistent with a cause-effect mechanism, disruption of DRMs by sphingolipid or cholesterol depletion leads to the non-polarized distribution and impaired endocytosis of PrP(C). These results indicate that DRMs are essential for proper trafficking and distribution of PrP(C) at late stages of neuronal differentiation and that its function, at least in hippocampus, is restricted to the axonal domain.


Asunto(s)
Axones/metabolismo , Hipocampo/embriología , Hipocampo/metabolismo , Microdominios de Membrana/metabolismo , Neuronas/metabolismo , Proteínas PrPC/metabolismo , Animales , Axones/ultraestructura , Diferenciación Celular/fisiología , Polaridad Celular/fisiología , Células Cultivadas , Colesterol/metabolismo , Endocitosis/fisiología , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Hipocampo/citología , Ratones , Neuronas/citología , Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo , Enfermedades por Prión/fisiopatología , Transporte de Proteínas/fisiología , Ratas , Esfingomielinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA